Сколько диагоналей имеет тетраэдр куб параллелепипед

Тест с ответами по математике “Тетраэдр. Параллелепипед” 10 класс

1. Сколько диагоналей у параллелепипеда:
а) 4 +
б) 6
в) 2

2. Сколько всего вершин имеет тетраэдр:
а) 6
б) 4 +
в) 8

3. Что лежит в основании параллелепипеда:
а) Трапеция
б) Треугольник
в) Параллелограмм +

4. Сколько всего ребер у тетраэдра:
а) 6 +
б) 8
в) 12

5. Сколько ребер у параллелепипеда:
а) 6
б) 8
в) 12 +

6. Из каких геометрических фигур состоит тетраэдр:
а) Трапеций
б) Треугольников +
в) Параллелограммов

7. Один из элементов параллелепипеда:
а) Биссектрисы
б) Отрезки
в) Грани +

8. Сколько всего граней у тетраэдра:
а) Треугольников +
б) Параллелограммов
в) Трапеций

9. Один из элементов параллелепипеда:
а) Биссектрисы
б) Дуги
в) Диагонали +

10. Боковые грани прямоугольного параллелепипеда не могут быть не прямоугольниками, так ли это:
а) Нет
б) Да +
в) Отчасти

11. Один из элементов параллелепипеда:
а) Ребра +
б) Отрезки
в) Дуги

12. Боковые грани прямоугольного параллелепипеда могут быть не прямоугольниками, так ли это:
а) Да
б) Нет +
в) Отчасти

13. Один из элементов параллелепипеда:
а) Вершины +
б) Дуги
в) Биссектрисы

14. Боковые грани прямоугольного параллелепипеда могут быть не прямоугольниками, так ли это:
а) Да
б) Отчасти
в) Нет +

15. Сколько всего вершин имеет параллелепипед:
а) 8 +
б) 6
в) 12

16. Боковыми гранями куба не могут быть прямоугольники с параллельными смежными сторонами, так ли это:
а) Да
б) Нет +
в) Отчасти

17. Сколько всего ребер у параллелепипеда:
а) 4
б) 8
в) 12 +

18. Основой параллелепипеда является треугольник, так ли это:
а) Да
б) Нет +
в) Отчасти

19. Сколько оснований имеет параллелепипед:
а) 8
б) 4
в) 2 +

20. Параллелепипеды могут быть прямые и наклонные, так ли это:
а) Нет
б) Да +
в) Отчасти

21. Сколько граней у параллелепипеда:
а) 6 +
б) 8
в) 12

22. У прямых параллелепипедов боковые грани — это прямоугольники, так ли это:
а) Нет
б) Да +
в) Отчасти

23. Из каких геометрических фигур состоит параллелепипед:
а) Треугольников
б) Трапеций
в) Параллелограммов +

24. Прямой параллелепипед, у которого основа прямоугольник, называется прямоугольным параллелепипедом, так ли это:
а) Нет
б) Да +
в) Отчасти

25. Сколько диагоналей у тетраэдра:
а) 6
б) 8
в) не имеет диагоналей +

26. Параллелепипедом называется призма, основой которой есть:
а) Трапеция
б) Параллелограмм +
в) Треугольник

27. Что лежит в основании тетраэдра:
а) Треугольник +
б) Пятиугольник
в) Шестиугольник

28. Один из элементов тетраэдра:
а) Отрезки
б) Дуги
в) Грани +

29. Один из элементов тетраэдра:
а) Ребра +
б) Дуги
в) Диагонали

30. Один из элементов тетраэдра:
а) Диагонали
б) Вершины +
в) Отрезки

Источник

Геометрия. 10 класс

Конспект урока

Урок №7. Тетраэдр и параллелепипед

Перечень вопросов, рассматриваемых в теме

  1. понятие тетраэдра;
  2. понятие параллелепипеда;
  3. свойства ребер, граней, диагоналей параллелепипеда;
  4. определение сечения в фигуре;
  5. метод следа.

Тетраэдр – это многогранник, состоящий из плоскости треугольника и точки не лежащий в этой плоскости, трех отрезков соединяющих эту точку с вершинами основания треугольника.

Четырёхугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.

Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда.

Сечением поверхности геометрических тел называется – плоская фигура, полученная в результате пересечения тела плоскостью и содержащая точки, принадлежащие как поверхности тела, так и секущей плоскости.

Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Учебник Геометрия 10-11 кл.– М.: Просвещение, 2014.

Зив Б.Г. Дидактические материалы Геометрия 10 кл.– М.: Просвещение, 2014.

Глазков Ю.А., Юдина И.И., Бутузов В.Ф. Рабочая тетрадь Геометрия 10 кл.-М.: Просвещение, 2013.

Открытый электронный ресурс:

Решу ЕГЭ. Открытый образовательный портал. https://ege.sdamgia.ru

Теоретический материал для самостоятельного изучения

В дельнейшем несколько уроков нашего курса будет посвящены многогранникам- поверхностям геометрических тел, составленным из многоугольников. Но до более подробного изучения многогранников мы познакомимся с двумя из них- тетраэдром и параллелепипедом. Нам данные тела дадут возможность проиллюстрировать понятия, связанные со взаимным расположением прямых и плоскостей.

Давайте вспомним, что мы понимали под многоугольником в планиметрии. Многоугольник мы рассматривали либо как замкнутую линию без самопересечений, либо как часть плоскости, ограниченную этой линией, включая ее саму.

Мы будем использовать второе толкование многоугольника при рассмотрении поверхностей и тел в пространстве. При таком толковании любой многоугольник в пространстве представляет собой плоскую поверхность.

Давайте рассмотрим изображенную фигуру и ответим на несколько вопросов.

Итак, поверхность данной фигуры состоит из четырёх треугольников DАВ, DВС, DАС и АВС.

  1. из вершин- их у него 4- А, B, C, D;
  2. из ребер- их у него 6- AB, BC, AC, AD, BD, CD;
  3. из граней- их у него 4- треугольники ∆АВС, ∆DАС, ∆DВС, ∆DАВ.

Мы с вами выяснили из элементов состоит наша фигура тетраэдр. Теперь сформулируем определение.

Определение. Тетраэдр – это многогранник, состоящий из плоскости треугольника и точки не лежащий в этой плоскости, трех отрезков соединяющих эту точку с вершинами основания треугольника.

Говорят, что рёбра АD и ВС, АВ и CD, и т.д.- противоположные.

Считается АВС — основание, остальные грани — боковые.

Изображается тетраэдр обычно так (рис. 1).

Рисунок 1 – изображение тетраэдра.

Математика, в частности геометрия, является мощнейшим инструментом в познании мира. Различные геометрические формы находят свое практическое приспособление в различных областях знания: архитектуре, скульптуре, живописи. И тетраэдр тому доказательство. Так же мы можем наблюдать тетраэдр в повседневной жизни (рис. 2).

Рисунок 2 — тетраэдр в повседневной жизни

Прежде чем начать изучать параллелепипед вспомним определение параллелограмма и его свойства.

Определение. Четырёхугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом (рис. 3).

Рисунок 3 – параллелограмм

1. Противоположные стороны параллелограмма равны:

2. Противоположные углы параллелограмма равны:

3. Диагонали параллелограмма точкой пересечения делятся пополам:

  1. Диагональ делит параллелограмм на два равных треугольника:

треугольники ABC и CDA равны.

6. Накрест лежащие углы при диагонали равны:

А теперь перейдем к параллелепипеду.

Рассмотрим два равных параллелограмма ABCD и A1B1C1D1, расположенных в параллельных плоскостях так, что отрезки AA1, BB1, CC1 и DD1 параллельны.

Давайте рассмотрим изображенную фигуру (рис. 4).

Рисунок 4 – параллелепипед и его диагонали

АВСDA1B1C1D1: поверхность, составленная из двух равных параллелограммов АВСD и A1B1C1D1, лежащих в параллельных плоскостях и четырёх параллелограммов.

Все параллелограммы — грани, их стороны — рёбра, их вершины — вершины параллелепипеда.

Считается: АВСD и A1B1C1D1основания, остальные грани — боковые.

Определение. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда:
A1C, D1B, AC1, DB1.

Параллелепипед – слово греческого происхождения, параллел – идущий рядом, епипед – плоскость.

Определение.Параллелепипед- этошестигранник с параллельными и равными противоположными гранями.

Следует отметить, что многоугольник в пространстве представляет собой плоскую поверхность, а тетраэдр и параллелепипед – поверхности, составленные из плоских поверхностей (соответственно треугольников и параллелограммов).

Способы изображения параллелепипеда

Параллелепипед, в основании которого лежит ромб

Параллелепипед, в основании которого лежит квадрат

Параллелепипед,в основании которого лежит прямоугольник или параллелограмм

Параллелепипед, у которого все грани — равные квадраты

Можно сделать вывод, что параллелепипеды делятся на (рис. 5)

Рисунок 5 – виды параллелепипедов

  1. Противоположные грани параллелепипеда параллельны и равны.
  2. Все четыре диагонали пересекаются в одной точке и делятся в ней пополам.

В параллелепипеде ABCDA1B1C1D1грани ВВ1С1С и AA1D1D параллельны (рис. 6), потому что две пересекающиеся прямые ВВ1 и В1С1 одной грани параллельны двум пересекающимся прямым АА1 и A1D1 другой; эти грани и равны, так как В1С1 = A1D1, В1В= А1А (как противоположные стороны параллелограммов) и ∟ ВВ1С1= ∟АA1D1.

Рисунок 6 – чертеж к доказательству свойства 1

Возьмём какие-нибудь две диагонали, например АС1 и ВD1, и проведём вспомогательные прямые АD1 и ВС1 (рис. 7).

Так как рёбра АВ и D1С1 соответственно равны и параллельны ребру DС, то они равны и параллельны между собой; вследствие этого фигура АD1С1В есть параллелограмм, в котором прямые С1А и ВD1 —диагонали, а в параллелограмме диагонали делятся в точке пересечения пополам.

Возьмём теперь одну из этих диагоналей, например АС1, с третьей диагональю, положим, с В1D. Совершенно так же мы можем доказать, что они делятся в точке пересечения пополам. Следовательно, диагонали B1D и АС1 и диагонали АС1 и BD1(которые мы раньше брали) пересекаются в одной и той же точке, именно в середине диагонали
АС1. Наконец, взяв эту же диагональ АС1 с четвёртой диагональю А1С, мы также докажем, что они делятся пополам. Значит, точка пересечения и этой пары диагоналей лежит в середине диагонали АС1. Таким образом, все четыре диагонали параллелепипеда пересекаются в одной и той же точке и делятся этой точкой пополам.

Рисунок 7 – чертеж к доказательству свойства 2

Задачи на построение сечений.

Определение. Сечением поверхности геометрических тел называется — плоская фигура, полученная в результате пересечения тела плоскостью и содержащая точки, принадлежащие как поверхности тела, так и секущей плоскости.

Взаимное расположение многогранника и секущей плоскости:

  1. Многогранник и плоскость не имеют общих точек.
  2. Многогранник и плоскость имеют одну общую точку-вершину многогранника.
  3. Многогранник и плоскость имеют общую грань.
  4. Многогранник и плоскость имеют общий отрезок-ребро многогранника.

  • сечение параллельное плоскости основания,
  • диагональное сечение,
  • сечение, параллельное плоскости грани,
  • произвольное сечение.

Фигуры, которые получаются в результате сечения:

Один из методов построения сечений, который мы рассмотрим- метод следа.

Рассмотрим метод следов, применяемый при построении сечений многогранников, а именно при построении сечения куба плоскостью.

Что такое метод следов? При построении сечений многогранников в качестве вспомогательной прямой часто используется след секущей плоскости (в плоскости грани, удобной для рассмотрения). Такой метод построения сечений называется методом следа.

Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки P, Q, R (рис. 8).

Рисунок 8 –чертеж к задаче №1

  1. Построим след секущей плоскости на плоскость нижнего основания параллелепипеда. Рассмотрим грань АА1В1В. В этой грани лежат точки сечения P и Q. Проведем прямую PQ.
  2. Продолжим прямую PQ, которая принадлежит сечению, до пересечения с прямой АВ. Получим точку S1, принадлежащую следу.
  3. Аналогично получаем точку S2 пересечением прямых QR и BC.
  4. Прямая S1S2 — след секущей плоскости на плоскость нижнего основания параллелепипеда.
  5. Прямая S1S2 пересекает сторону AD в точке U, сторону CD в точке Т. Соединим точки P и U, так как они лежат в одной плоскости грани АА1D1D. Аналогично получаем TU и RT.
  6. PQRTU – искомое сечение.

Основные правила построения сечений методом следа:

  • Если даны (или уже построены) две точки плоскости сечения на одной грани многогранника, то след сечения этой плоскости – прямая, проходящая через эти три точки.
  • Если дана (или уже построена) прямая пересечения плоскости сечения с основанием многогранника (след на основании) и есть точка, принадлежащая определенной боковой грани, то нужно определить точку пересечения данного следа с этой боковой гранью ( точка пересечения данного следа с общей прямой основания и данной боковой грани)
  • Точку пересечения плоскости сечения с основанием можно определить как точку пересечения какой-либо прямой в плоскости сечения с ее проекцией на плоскость основания.

То есть, суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры.

Дан тетраэдр АВСD. Точка М – точка внутренняя, точка грани тетраэдра АВD. N – внутренняя точка отрезка DС. Построить точку пересечения прямой NM и плоскости АВС.

Рисунок 9 – чертеж к задаче №2

Решение:
Для решения построим вспомогательную плоскость DМN (рис. 10). Пусть прямая DМ пересекает прямую АВ в точке К. Тогда, СКD – это сечение плоскости DМN и тетраэдра. В плоскости DМN лежит и прямая NM, и полученная прямая СК. Значит, если NM не параллельна СК, то они пересекутся в некоторой точке Р. Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС.

Примеры и разбор решения заданий тренировочного модуля

Дан тетраэдр АВСD. М – внутренняя точка грани АВD. Р – внутренняя точка грани АВС. N – внутренняя точка ребра DС. Построить сечение тетраэдра плоскостью, проходящей через точки М, N и Р.

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС (рис. 11). В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС. Это точка К, она получена с помощью вспомогательной плоскости DМN, т.е. мы проводим DМ и получаем точку F. Проводим СF и на пересечении MN получаем точку К.

Проведем прямую КР. Прямая КР лежит и в плоскости сечения, и в плоскости АВС. Получаем точки Р1 и Р2. Соединяем Р1 и М и на продолжении получаем точку М1. Соединяем точку Р2 и N. В результате получаем искомое сечение Р1Р2NМ1. Задача в первом случае решена.

Рисунок 10 – чертеж к примеру 1 (первый случай)

Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС (рис. 12). Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р1Р2, тогда прямая Р1Р2 параллельна данной прямой MN.

Рисунок 11 – чертеж к примеру 1 (второй случай)

Через середины ребер АВ и ВС тетраэдра SABC проведена плоскость параллельно ребру SB. Докажите, что эта плоскость пересекает грани SAB и SBC по параллельным прямым.

Плоскость SBC и плоскость, проходящая через прямую MN параллельно ребру SB, пересекаются по прямой, проходящей через точку N (рис. 13).
По теореме (о параллельных прямых) линия пересечения параллельна SB.
В плоскость SBC через т. N проходит NQ||SB.
Плоскость SAB и плоскость MNQ пересекаются по прямой, проходящей через т. M (прямая MP). По теореме (о параллельных прямых) линия пересечения параллельна SB.

следовательно, PM||NQ.Утверждение доказано.

Источник

Оцените статью
Юридический портал
Adblock
detector