Построить сечение куба плоскостью klm

Сечение куба плоскостью

Задание: На ребрах взяты точки K, L и M, как показано на рисунках. Постройте сечение куба плоскостью, проходящей через эти точки.

Слайд 21 из презентации «Сечения фигур». Размер архива с презентацией 280 КБ.

Геометрия 10 класс

«Сечение многогранников» — Разделите каждую изучаемую вами задачу. Определения. Постройте сечение тетраэдра. Метод следов. Методы построения сечений. Правила для самоконтроля. Основные виды сечений многогранников. Сечениями. План построения линий пересечения плоскостей. Сечения многогранников.

«Представление о правильных многогранниках» — Большой звездчатый додекаэдр. Икосаэдро-додекаэдровая структура Земли. Правильные многогранники. Формула Эйлера. Сальвадор Дали «Тайная вечеря». «Космический кубок» Кеплера. Пять типов правильных выпуклых многогранников. Иногда называют Платоновыми телами. Названия многогранников. Тетраэдр. Правильные многогранники и природа. Эпиграф.

«Виды правильных многогранников» — Звёздчатый додекаэдр. Тайнaя вечеря. Правильные многогранники. Икосаэдр передаёт форму кристаллов бора. Многогранники в природе. Отряд. Правильные многогранники и природа. Тетраэдр. Усечённый икосаэдр. Платон. Евклид. Теорема Эйлера. Ученые, внесшие вклад в изучение правильных многогранников. Площадь поверхности додекаэдра. Висячие сады Семирамиды. Звёздчатый икосаэдр. Кубок Кеплера. Основные понятия о многогранниках.

«Условие перпендикулярности прямой и плоскости» — Прямая а перпендикулярна к плоскости АНМ. Признак перпендикулярности плоскостей. В плоскости b через точку М проведем прямую с. Две пересекающиеся плоскости. Докажем,что прямая а перпендикулярна к произвольной прямой m. Признак перпендикулярности прямой и плоскости. Произвольная прямая плоскости a. План построения. Двугранный угол. Свойства наклонных. Лемма о перпендикулярности двух параллельных прямых.

«Элементы пирамиды» — Многогранник. Площадь боковой поверхности. Величайшие пирамиды. Основные элементы пирамид. Исторические сведения о пирамидах. Интерес. Пирамида Хафра. Пирамиды. Пирамида Менкаура. Пирамида Хеопса. Задача.

««Параллельность плоскостей» 10 класс» — Прямая A пересекает плоскости. Докажите, что плоскости ЕКМ и АВС параллельны. Пересекающиеся в точке М прямые a и b. Признак параллельности трех плоскостей. Плоскости А1В1С1 и А2В2С2 параллельны. Признак параллельности двух плоскостей. Свойство параллельных плоскостей. Параллельность. Найдите взаимное положение прямых. Отрезки параллельных прямых. Точка В не лежит в плоскости треугольника АDC. Пересекающиеся прямые m и n плоскости параллельны плоскости.

Всего в теме «Геометрия 10 класс» 54 презентации

Источник

ИНТЕРАКТИВНЫЕ МОДЕЛИ В ОБУЧЕНИИ

Пример: модели МК в электронном учебнике

Сечения многогранников

ТЕОРИЯ

В этом разделе мы рассмотрим методы построения сечений многогранников. Плоскость сечения, как правило, будет задаваться тремя точками – K, L, M. Сложность такой задачи во многом определяется расположением точек, задающих плоскость сечения.

Пример 1

Самый простой случай – когда точки лежат на трёх смежных рёбрах пирамиды – не нуждается в разборе.

Основной метод, который используется при построении сечений, называется методом следов.

Следом называется прямая, по которой плоскость сечения пересекает плоскость любой из граней многогранника. Если такой след найден, то точки его пересечения с соответствующими рёбрами многогранника и будут вершинами искомого сечения.

Пример 2

Пусть теперь точки K и M лежат на боковых рёбрах пирамиды, а точка L – на стороне основания.

  1. Проведём в плоскости SAC прямую KL – след сечения в этой плоскости.
  2. Отметим точку P пересечения KL с SC.
  3. Проведём прямую PM – след сечения в плоскости SBC, – и отметим точку пересечения PM и BC.
  4. Все четыре вершины сечения получены – строим сечение.

Пример 3

Несколько труднее случай, когда одна из точек лежит на ребре, а две другие — на гранях пирамиды.

Теперь сразу построить след плоскости сечения в какой-то из граней нельзя.

  1. Рассмотрим вспомогательную плоскостьSKM, которая пересекает рёбра AC и BC в точках E и F соответственно.
  2. Построим в этой плоскости прямую KM – след плоскости сечения – и отметим точку P пересечения KM с EF.
  3. Точка P лежит в плоскости сечения и в плоскости ABC. Но в этой же плоскости лежит и точка L. Проведём прямую PL – след сечения в плоскости ABC – и отметим точку пересечения PL с BC.
  4. Строим след сечения в плоскости SBC и отмечаем точку его пересечения с SC.
  5. Строим след сечения в плоскости SAC и отмечаем точку его пересечения с SA.
  6. Все четыре вершины сечения получены – строим сечение.

Использованный на первом шаге построения приём часто называют методом вспомогательных плоскостей. Рассмотрим ещё один пример, где он используется.

Пример 4

Рассмотрим теперь самый общий случай, когда все три точки K, L и M лежат на гранях пирамиды.

  1. Как и в предыдущем случае проведём вспомогательную плоскость CKM, которая пересекает рёбра SA и SB в точках E и F соответственно.
  2. Построим в этой плоскости прямую KM — след плоскости сечения – и отметим точку P пересечения KM с EF.
  3. Точка P, как и L, лежит в плоскости SAB, поэтому прямая PL будет следом сечения в плоскости SAB, а её точки пересечения с SA и SB – вершинами сечения.
  4. Теперь можно построить следы сечения в плоскостях SAC и SBC и отметить их точки пересечения с рёбрами AC и BC.
  5. Все четыре вершины сечения получены – строим сечение.

С помощью метода вспомогательных плоскостей можно строить сечения, «не выходя» за пределы многогранника. Вернёмся в связи с этим к примеру 2.

Пример 2’

Точки K и M лежат на боковых рёбрах пирамиды, а точка L – на стороне основания. Построим сечение, «не выходя» за пределы многогранника.

  1. Проведём вспомогательную плоскость SLB и в ней отрезок LM, который принадлежит плоскости сечения.
  2. Проведём ещё одну вспомогательную плоскость BCK и построим точку пересечения SL и CK – точку E. Эта точка принадлежит обеим вспомогательным плоскостям.
  3. Отметим точку пересечения отрезков LM и EB – точку F. Точка F лежит в плоскости сечения и в плоскости BCK.
  4. Проведём прямую KF и отметим точку пересечения этой прямой c BC – точку N. Эта точка будет недостающей четвёртой вершиной сечения.
  5. Все четыре вершины сечения получены – построим сечение.

Можно использовать ту же самую идею иначе. Проведём в начале анализ построенного сечения – т.е. начнём с конца. Допустим, что по точкам K, L и M построено сечение KLMN.

Обозначим через F точку пересечения диагоналей четырёхугольника KLMN. Проведём прямую CF и обозначим через F1 точку её пересечения с гранью SAB. С другой стороны, точка F1 совпадает с точкой пересечения прямых KB и MA, исходя из чего её и можно построить.

  1. Проведём прямые KB и MA и отметим точку их пересечения F1.
  2. Проведём прямые CF1 и LM и отметим точку их пересечения F.
  3. Проведём прямую KF и отметим точку её пересечения с ребром CB – точку N. Эта точка будет недостающей четвёртой вершиной сечения.
  4. Все четыре вершины сечения получены – построим сечение.

Использованный в этом решении приём называют методом внутреннего проектирования. Построим с его помощью сечение из примера 4, когда все три точки лежат на гранях пирамиды.

Пример 3’

Точки K, L и M лежат на гранях пирамиды. Построим сечение, «не выходя» за пределы многогранника.

Допустим, что сечение уже построено.

Пусть плоскость сечения пересекает ребро CB в точке P. Обозначим через F точку пересечения KM и LP. Построим центральные проекции точек K, F и M из точки C на плоскость SAB и обозначим их K1, F1 и M1. Точки K1 и M1 легко находятся, а точку F1 можно получить как точку пересечения K1M1 и LB.

  1. Построим центральные проекции точек K и M из точки C на плоскость SAB и обозначим их K1 и M1.
  2. Проведём прямые K1M1 и LB и отметим точку их пересечения F1.
  3. Проведём прямые CF1 и KM и отметим точку их пересечения F.
  4. Проведём прямую LF и отметим точку её пересечения с ребром CB – точку P. Это первая вершина искомого сечения.
  5. Проведём прямую PM и отметим точку её пересечения с ребром SB. Это вторая вершина сечения.
  6. Из второй вершины проведём прямую через точку L и найдём третью вершину сечения.
  7. Из третьей вершины проведём прямую через точку K и найдём четвёртую вершину сечения.
  8. Все четыре вершины сечения получены – построим сечение.

УПРАЖНЕНИЯ

Более сложные упражнения помечены звёздочкой.

1. Постройте сечение треугольной пирамиды плоскостью, проходящей через точки K, L и M (см. модели).


a

b

c

d

2. Постройте сечение куба плоскостью, проходящей через точки K, L и M (см. модели).


a

b

c

d

e

3. На рёбрах пирамиды SABC отмечены точки K, L и M. Постройте:


(a) прямую, по которой пересекаются плоскости CSK и MLA;

(b) точку пересечения плоскостей ACM, CSK и ASL;

(c) точку пересечения плоскостей AML, CKM и SKL.

4*. На рёбрах пирамиды SABC отмечены точки K, L, M, P, N и Q. Постройте:


(a) прямую, по которой пересекаются плоскости KLM и PNQ;

(b) точку пересечения плоскостей ALM, CNP и SKQ.

5*. На ребре AB треугольной пирамиды SABC отмечена точка K. Постройте сечение пирамиды плоскостью, проходящей через точку K и параллельной BC и SA.

6*. На рёбрах AB и CS треугольной пирамиды SABC отмечены точки K и M. Постройте сечение пирамиды плоскостью, проходящей через точки K и M и параллельной AS.

7*. Постройте сечение треугольной пирамиды плоскостью, проходящей через точки K, L и M, лежащих в плоскостях её боковых граней (но не на самих гранях!).

8*. На плоскости проведены три луча с общим началом – a, b и с – и отмечены три точки – A, B и C. Постройте треугольник, вершины которого лежат на этих лучах, а стороны проходят через точки A, B и C.

Источник

Построить сечение куба плоскостью klm

Правила построения сечений многогранников:

1) проводим прямые через точки, лежащие в одной плоскости;

2) ищем прямые пересечения плоскости сечения с гранями многогранника, для этого

а) ищем точки пересечения прямой принадлежащей плоскости сечения с прямой, принадлежащей одной из граней (лежащие в одной плоскости);

б) параллельные грани плоскость сечения пересекает по параллельным прямым.

Примеры построения сечений:

Рассмотрим прямоугольный параллелепипед ABCDA1B1C1D1. Построим сечение, проходящее через точки M, N, L.

Соединим точки M и L, лежащие в плоскости AA1D1D.

Пересечем прямую ML ( принадлежащую сечению) с ребром A1D1, они лежат в одной плоскости AA1D1D. Получим точку X1.

Точка X1 лежит на ребре A1D1, а значит и плоскости A1B1C1D1, соединим ее сточкой N, лежащей в этой же плоскости.

X1 N пересекается с ребром A1B1 в точке К.

Соединим точки K и M, лежащие в одной плоскости AA1B1B.

Найдем прямую пересечения плоскости сечения с плоскостью DD1C1C:

пересечем прямую ML (принадлежащую сечению) с ребром DD1, они лежат в одной плоскости AA1D1D, получим точку X2;

пересечем прямую KN (принадлежащую сечению) с ребром D1C1, они лежат в одной плоскости A1B1C1D1, получим точку X3;

Точки X2 и X3 лежат в плоскости DD1C1C. Проведем прямую X2 X3 , которая пересечет ребро C1C в точке T, а ребро DC в точке P. И соединим точки L и P, лежащие в плоскости ABCD.

Рассмотрим ту же самую задачу на построение сечения, но воспользуемся свойством параллельных плоскостей. Это облегчит нам построение сечения.

.

Соединим точки M и L, лежащие в плоскости AA1D1D.

.

Через точку N, проведем прямую NT параллельную прямой ML. Прямые NT и ML лежат в параллельных плоскостях по свойству параллелепипеда.

.

Пересечем прямую ML ( принадлежащую сечению) с ребром A1D1, они лежат в одной плоскости AA1D1D. Получим точку X1.

.

Точка X1 лежит на ребре A1D1, а значит и плоскости A1B1C1D1, соединим ее сточкой N, лежащей в этой же плоскости.

X1 N пересекается с ребром A1B1 в точке К.

.

Соединим точки K и M, лежащие в одной плоскости AA1B1B.

.

Проведем прямую TP через точку T, параллельно прямой KM ( они лежат в параллельных плоскостях).

.

Соединим точки P и L ( они лежат в одной плоскости).

.

Источник

Оцените статью
Юридический портал
Adblock
detector