Как вынести из под корня куб

Содержание
  1. Как вынести из-под корня
  2. № 15 .1 (в) Мордкович 8 класс
  3. Как вынести множитель из корня с одним числом
  4. № 524 (1) Мерзляк 8 класс
  5. № 524 (4) Мерзляк 8 класс
  6. № 524 (5) Мерзляк 8 класс
  7. № 524 (6) Мерзляк 8 класс
  8. № 524 (8) Мерзляк 8 класс
  9. № 526 (6) Мерзляк 8 класс
  10. № 526 (8) Мерзляк 8 класс
  11. Как вынести десятичную дробь из-под знака корня
  12. № 524 (10) Мерзляк 8 класс
  13. Примеры вынесения десятичной дроби из-под знака квадратного корня
  14. № 524 (9) Мерзляк 8 класс
  15. № 526 (7) Мерзляк 8 класс
  16. Как вынести букву из-под знака корня
  17. № 347 (2, 4) Колягин (Алимов) 8 класс
  18. № 348 (2) Колягин (Алимов) 8 класс
  19. № 549 (2) Мерзляк 8 класс
  20. Кубический корень. Извлечение кубического корня
  21. Алгоритм извлечения кубического корня
  22. Вынесение из под знака корня
  23. Правило вынесения из-под корня
  24. Квадратный корень
  25. Корень n-ой степени
  26. Допустимые действия под корнем
  27. Вынесение буквы
  28. Как вынести множитель из-под знака корня: теория, примеры, решения
  29. Что такое вынесение множителя из-под знака корня
  30. Почему возможно заменить корень на произведение
  31. Основное правило вынесения множителя из-под корня
  32. Задачи на вынесение множителя из-под знака корня
  33. Предварительное преобразование подкоренного выражения

Как вынести из-под корня

Вынесение множителя из-под знака корня — это извлечение корня из одного из множителей (числа или буквы), которые находятся под корнем.

Говорят: «Число « 25 » вынесли из-под знака корня».

Рассмотрим подробнее пример вынесения множителя из-под знака корня.

№ 15 .1 (в) Мордкович 8 класс

Вынесите множитель из-под знака корня:

Извлечь квадратный корень из « √ 5 » целым числом не получится, поэтому нам остается только извлечь квадратный корень из « √ 16 ».

Обязательно выучите таблицу квадратов чисел от « 1 » до « 15 » и таблицу часто используемых квадратных корней.

Вспомним, чему равен квадрат числа четыре?

Решение примера выше записываем следующим образом.

Действие выше называют вынесением множителя из-под знака корня. Говорят: «Число « 16 » вынесли из-под знака корня, получив число « 4 ».

Выносить из-под знака корня можно, только если все действия под знаком корня — умножение .

Примеры правильного и неправильного вынесения из-под знака корня:

  • √ 144 · 2 = √ 144 · √ 2 = 12 √ 2 (верно) . Под знаком квадратного корня только действие умножения;
  • √ 16 + 5 ≠ 4 + √ 5 (неверно) . Нельзя выносить « 16 » из-под знака корня, так как под знаком корня сложение ;
  • √ 25 − 3 ≠ 5 − √ 3 (неверно) . Нельзя выносить из-под знака корня « 25 », так как под знаком корня вычитание ;
  • √ 16 ·2 + 3 ≠ 4 √ 2 + 3 (неверно) . Нельзя выносить « 16 » из-под знака корня, так как под знаком корня есть сложение (должно быть только умножение ).

Как вынести множитель из корня с одним числом

Рассмотрим пример, когда под корнем только одно число и по условию задания требуется вынести множитель из-под знака корня.

№ 524 (1) Мерзляк 8 класс

Вынесите множитель из-под знака корня:

Извлечь целое число из квадратного корня « √ 8 » нельзя, так как нет такого целого числа, которое в квадрате давало бы « 8 ».

Обязательно выучите таблицу квадратов чисел от « 1 » до « 15 » и таблицу часто используемых квадратных корней.

Подумаем, на какие множители можно разложить число « 8 », чтобы была возможность вынести один из множителей из-под знака корня. Вспоминаем таблицу умножения.

Число « 8 » — это произведение
« 8 = 4 · 2 ». Теперь можем вынести « 4 » из-под знака корня.

Разберем другие примеры вынесения множителя из-под знака квадратного корня

№ 524 (4) Мерзляк 8 класс

Вынесите множитель из-под знака корня:

Зададим себе вопрос: «На какие множители нужно разложить « 54 », чтобы была возможность вынести один из множителей из-под знака квадратного корня?».

Видим число « 9 ». Подходит, так как « √ 9 = 3 ».

Завершим решение примера вынесением из-под знака корня числа « 9 ».

Извлечь « √ 6 » целым числом невозможно. Поэтому ответ оставляем в таком виде.

№ 524 (5) Мерзляк 8 класс

Вынесите множитель из-под знака корня:

В примерах с числами, которые делятся на « 10, 100, 1000… » и так далее, стоит сразу попробовать разложить число на « 10, 100, 1000… » и второй множитель.

То есть число « 490 » можно разложить на « 490 = 49 · 10 ». Из « 49 » можно извлечь квадратный корень.

Теперь можно вынести « 49 » из-под знака корня.

№ 524 (6) Мерзляк 8 класс

№ 524 (8) Мерзляк 8 класс

№ 526 (6) Мерзляк 8 класс

Завершим пример, умножив десятичную дробь « 0,4 » на « 5 » по правилу умножения десятичной дроби на число.

№ 526 (8) Мерзляк 8 класс

4
9

· √ 63 =

4
9

· √ 9 · 7 =

4
9

· 3 √ 7 =

=

4 · 3
9

· √ 7 =

4 · 3
9 3

· √ 7 =

4
9

· √ 63 =

4
9

· √ 9 · 7 =

4
9

· 3 √ 7 =

=

4 · 3
9

· √ 7 =

4 · 3
9 3

· √ 7 =

4
3

· √ 7 =

Как вынести десятичную дробь из-под знака корня

В уроке «Как извлечь квадратный корень из дроби» мы разбирали, каким образом извлечь квадратный корень из десятичной дроби. Например, извлечение квадратного корня из десятичной дроби « √ 0,25 ».

√ 0,25 = 0,5 , так как
0,5 2 = 0,5 · 0,5 = 0,25

Тот же самый метод используется при вынесении десятичной дроби из-под знака корня.

№ 524 (10) Мерзляк 8 класс

Вынесите множитель из-под знака корня:

Разложим десятичную дробь на произведение множителей, чтобы потом была возможность вынести один из множителей из-под знака корня.

Подберем десятичную дробь, на которую делится « 0,48 », из которой потом можно извлечь квадратный корень.

Например, « 0,16 ». Десятичная дробь « 0,48 » делится на « 0,16 » нацело.

Извлечь квадратный корень из « √ 0,16 » по правилу нахождения квадратного корня из десятичной дроби.

Завершим пример вынесением « 0,16 » из-под знака корня.

Примеры вынесения десятичной дроби из-под знака квадратного корня

№ 524 (9) Мерзляк 8 класс

Вынесите множитель из-под знака корня:

№ 526 (7) Мерзляк 8 класс

Вынесите множитель из-под знака корня:

Как вынести букву из-под знака корня

При вынесении из-под знака квадратного корня множителя в степени (буквы или числа) степень делится на « 2 ».

  • √ a 2 = a
    2
    2

    = a 1 = a , гдe a ≥ 0

  • √ y 4 = y
    4
    2

    = y 2 , гдe y ≥ 0

  • √ 12 4 = 12
    4
    2

    = 12 2 = 144

  • √ x 6 = x
    6
    2

    = x 3 , гдe x ≥ 0

Рассмотрим примеры вынесения буквы в степени из-под корня.

№ 347 (2, 4) Колягин (Алимов) 8 класс

Вынести множитель из-под знака корня (буквами обозначены положительные числа).

2) √ 2x 2 = x

2
2

√ 2 = x √ 2

4) √ 3a 6 = a

6
2

√ 3 = a 3 √ 3

В более сложных примерах требуется вынести и числовой множитель, и букву в степени из-под корня.

№ 348 (2) Колягин (Алимов) 8 класс

Вынести множитель из-под знака корня (буквами обозначены положительные числа).

Вначале отдельно вынесем буквенный множитель из-под корня.

Теперь разложим число « 75 » на множители, один из которых можно вынести из-под знака квадратного корня.

Число « 75 » явно делится на « 5 ». Проверим, можно ли число « 75 » разложить на квадрат числа « 5 2 = 25 ».

Завершим пример, вынеся число « 25 » из-под знака корня.

√ 75a 2 = a

2
2

· √ 75 = a √ 75 =

№ 549 (2) Мерзляк 8 класс

Не всегда удается сразу вынести букву в степени из-под знака корня. В данном примере степень « 9 » не делится нацело на « 2 ».

Вспомним из урока «Свойства степени» правило произведение степеней с одинаковым основанием.

Свойство работает и в обратную сторону.

Вернемся к нашему примеру. Разложим « y 9 » на множители со степенями так, чтобы одна из степеней нацело делилась на « 2 ». Представим степень « 9 » как сумму чисел « 9 = 6 + 3 ».

Используем свойство произведения степеней с одинаковым основанием в обратную сторону и разложим « у » на множители.

Источник

Кубический корень. Извлечение кубического корня

Кубический корень из a , обозначающийся как 3 √a или как a 1/3 — решение уравнения x 3 = a (обычно подразумеваются вещественные решения).

Кубический корень — нечётная функция. В отличие от квадратного корня, кубический корень может быть извлечён и из отрицательных чисел.

Онлайн калькулятор для расчета кубического корня для положительных и отрицательных чисел.

Алгоритм извлечения кубического корня

Перед началом необходимо разделить число на тройки (целую часть — справа налево, дробную — слева направо). Когда Вы достигли десятичной запятой, в конце результата необходимо поставить десятичную запятую.

  1. Найдите число, куб которого меньше первой группы цифр, но при её увеличении на 1 она становиться больше. Выпишите найденное число справа от данного числа. Под ним запишите число 3.
  2. Запишите куб найденного числа под первой группой цифр и произведите вычитание. Результат после вычитания запишите под вычитаемым. Далее снесите следующую группу цифр.
  3. Далее найденный промежуточный ответ заменим буквой a. Вычислите по формуле 300× a 2 × x+30× a × x 2 +x 3 такое число x , что его результат меньше нижнего числа, но при увеличении на 1 становится больше. Запишите найденное x справа от ответа. Если достигнута необходимая точность, прекратите вычисления.
  4. Запишите под нижним числом результат вычисления по формуле 300 × a 2 × x+30 × a × x 2 +x 3 и произведите вычитание. Перейдите к пункту 3.

Источник

Вынесение из под знака корня

В данной публикации мы рассмотрим, как выносить числа (множители) и буквы из-под знака корня второй и более старших степеней. Информация сопровождается практическими примерами для лучшего понимания.

Правило вынесения из-под корня

Квадратный корень

Вынести число (множитель) из-под знака корня – это значит извлечь корень из подкоренного выражения (т.е. того, что находится под знаком корня).

  • √ 4 = 2, т.к. 2 2 = 4;
  • √ 36 = 6, т.к. 6 2 = 36.

Примечание: чтобы было проще выносить числа и множители из-под знака квадратного корня, рекомендуется выучить квадраты натуральных чисел, хотя бы до 20.

Корень n-ой степени

Для вынесения подкоренного выражения из-под корня третьей и более старших степеней, извлекаем корень в соответствующей степени.

Пример 1
Вынесем множитель из-под корня .

Решение:
В данном случае извлечь квадратный корень можно только из числа двадцать пять, что мы и сделаем.

Пример 2
Вынесем множитель из √ 45 .

Решение:
1. Сперва разложим подкоренное выражение (число 45) на множители. В нашем случае – это 9 и 5.
2. Из полученных чисел извлечь квадратный корень можно только из девяти. Таким образом получаем:

Допустимые действия под корнем

Если требуется вынести из-под корня выражение, то это можно сделать только в отношении произведения.

  • √ 16 · 5 = √ 16 · √ 5 (правильно)
  • √ 25 + 11 ≠ √ 25 + √ 11 (неправильно)
  • √ 47 – 38 ≠ √ 47 – √ 38 (неправильно)
  • √ 8 : 2 ≠ √ 8 : √ 2 (неправильно)

За исключением первого варианта, в остальных случаях сперва необходимо выполнить действия под корнем, а потом уже извлечь его.

  • √ 25 + 11 = √ 36 = 6
  • √ 47 – 38 = √ 9 = 3
  • √ 8 : 2 = √ 4 = 2

Вынесение буквы

Вынести букву из-под корня – это то же самое, что и возвести ее в дробь, где в числителе – степень подкоренного выражения, в знаменателе – самого корня.

Примечание: этой же формулой можно пользоваться, подставляя вместо буквы конкретные числа.

Источник

Как вынести множитель из-под знака корня: теория, примеры, решения

В данном материале мы продолжим рассказывать о том, как преобразовывать рациональные выражения, а конкретно о том, как правильно выносить множитель из-под знака корня. В первом пункте объясним, зачем нужно такое преобразование, далее покажем, как именно оно делается и сформулируем общее для всех случаев правило. Далее покажем, какие существуют методы, чтобы привести подкоренное выражение к удобному для преобразования виду, и разберем примеры решений задач.

Что такое вынесение множителя из-под знака корня

Чтобы лучше понять суть подобного преобразования, нужно сначала сформулировать, что такое вообще вынесение множителя из-под знака корня. Сформулируем определение:

Вынесение множителя из-под знака корня представляет собой замену выражения B n · C n на произведение B · C n с условием, что n – нечетное число, или же на произведение B · C – где n – четное число, а B и C – другие числа и выражения.

Если мы имеем в виду только квадратный корень, то есть число n равно двум, то процесс вынесения множителя можно свести к замене выражения B 2 · C на произведение B · C . Отсюда и название данного преобразования: после того, как оно было проведено, множитель B y оказывается свободным от знака корня.

Приведем примеры, поясняющие данное определение. Так, допустим, у нас есть выражение 2 2 · 3 . Оно аналогично B 2 · C , где B равно двум, а C – трем. Заменив данный корень на произведение 2 · 3 и опустив знаки модулей (это можно сделать, поскольку оба множителя являются положительными числами), мы получим 2 · 3 . Мы вынесли множитель 2 2 из-под знака корня.

Приведем еще один пример подобного преобразования. У нас есть выражение ( x 2 — 3 · x · y · z ) 2 · x = x 2 — 3 · x · y · z · x . Здесь из-под корня был вынесен не просто числовой множитель, а целое выражение с переменными ( x 2 − 3 · x · y · z ) 2 .

Оба примера относятся к случаю вынесения множителя из-под квадратного корня. Можно также производить данные преобразования и для корней n -ной степени. Вот пример с кубическим корнем: ( 3 · a 2 ) 3 · 2 · a 2 3 = 3 · a 2 · 2 · a 2 3

Пример с корнем шестой степени: 1 2 · x 2 + y 2 6 · 5 · ( x 2 + y 2 ) 6 можно преобразовать в произведение 1 2 · x 2 + y 2 · 5 · ( x 2 · y 2 ) 6 , которое, в свою очередь, упрощается до 1 2 · ( x 2 + y 2 ) · 5 · ( x 2 + y 2 ) 6 . В данном случае мы выносим множитель 1 2 · x 2 + y 2 6 .

Мы выяснили, что такое вынесение множителя из-под знака корня. Теперь перейдем к доказательствам, т.е. поясним, почему произведение, полученное в итоге данного преобразования, равнозначно исходному выражению.

Почему возможно заменить корень на произведение

В этом пункте мы будем разбираться, как возможна такая замена и почему корень B n · C n равнозначен произведениям B · C n и B · C n . Обратимся к ранее изученным теоретическим положениям.

Когда мы разбирали преобразование иррациональных выражений, у нас получились некоторые важные результаты, которые мы собрали в таблицу. Здесь нам будут нужны только два из них:

1. Выражение A · B n при условии нечетности n может быть заменено на A n · B n , а для четных n – A n · B n .

2. Выражение A n n при нечетном значении n может быть преобразовано в A , а при четном – в | A | .

Используя эти результаты и зная основные свойства модуля, мы можем вывести следующее:

  • при четном n : B n · C n = B n n · C n = B · C n ;
  • при нечетном n : B n · C n = B n n · C n = B n n · C n = B · C n .

Эти выражения лежат в основе преобразований, которые мы проводим, вынося множитель из-под знака корня.

Следовательно, можно вывести две формулы:

  • B 1 n · B 2 n · . . . · B k n · C n = B 1 · B 2 · . . . · B k · C n для нечетного n ;
  • B 1 n · B 2 n · . . . · B k n · C n = B 1 · B 2 · . . . · B k · C n для четного n .

Здесь B 1 , B 2 , и др. могут быть как числами, так и выражениями.

С помощью данных формул можно выполнить вынесение из-под корня сразу нескольких множителей.

Основное правило вынесения множителя из-под корня

Когда нам нужно решать примеры с подобными преобразованиями, чаще всего приходится предварительно приводить подкоренное выражение к виду B n · C . С учетом этого момента мы можем записать следующие правила.

Для вынесения множителя из-под корня в выражении A n нужно предварительно привести корень к виду B n · C n и после этого перейти к произведению B · C n (при нечетном показателе) или к B · C n (при четном показателе, при необходимости раскрываем модули).

Таким образом, схема решения подобных задач выглядит следующим образом:

A n → B n · C n → B · C n , е с л и n — н е ч е т н о е B · C n , е с л и n — ч е т н о е

Если нам надо вынести несколько множителей, то действуем так:

A n → B 1 n · B 2 n · . . . · B k n · C n → B 1 · B 2 · . . . · B k · C n , е с л и n — н е ч е т н о е B 1 · B 2 · . . . · B k · C n , е с л и n — ч е т н о е

Теперь можно переходить к решению задач.

Задачи на вынесение множителя из-под знака корня

Условие: выполните вынесение множителя за знак корня в трех выражениях: 2 2 · 7 , — 1 2 3 2 · 5 , ( — 0 , 4 ) 7 · 11 7 .

Мы видим, что подкоренные выражения во всех трех случаях уже имеют нужный нам вид. Поскольку в первых двух примерах показателем корня является четное число, а в третьем – нечетное, записываем следующее:

  1. Показатель корня равен 2 . Берем правило вынесения множителя для четного показателя и вычисляем: 2 2 · 7 = 2 · 7 = 2 · 7
  2. Во втором выражении показатель тоже четный, значит, — 1 2 3 2 · 5 = — 1 2 3 · 5 = 1 2 3 · 5
    В этом случае мы можем сначала преобразовать выражения, исходя из основных свойств корня:
    — 1 2 3 2 · 5 = — 1 2 · 1 2 3 2 · 5 = 1 2 3 2 · 5
    А потом уже выносить множитель: 1 2 3 2 · 5 = 1 2 3 · 5 = 1 2 3 · 5 .
  3. Последнее выражение имеет нечетный показатель, поэтому нам понадобится другое правило: ( — 0 , 4 ) 7 · 11 7 = — 0 , 4 · 11 7 .
    Возможен и такой вариант расчета:
    — 0 , 4 7 · 11 7 = ( — 1 ) 7 · 0 , 4 7 · 11 7 = = — 0 , 4 7 · 11 7 = — 0 , 4 7 · 11 7 = — 0 , 4 · 11 7
    ​​​​​​Или такой:
    — 0 , 4 7 · 11 7 = ( — 1 ) 7 · 0 , 4 7 · 11 7 = = — 0 , 4 7 · 11 7 = 0 , 4 7 · — 11 7 = 0 , 4 · — 11 7 = — 0 , 4 · 11 7

Ответ: 1 ) 2 · 7 ; 2 ) 1 2 3 · 5 ; 3 ) — 0 , 4 · 11 7 .

Условие: преобразуйте выражение ( — 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 .

При помощи схемы, приведенной во втором пункте статьи, мы можем вынести из-под корня сразу три множителя.

( — 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = = — 2 · 0 , 3 · 7 · 11 4 = 4 , 2 · 11 4

Можно сделать преобразование в несколько шагов, вынося множителя по одному, но так будет гораздо дольше.

Есть и другой способ. Преобразуем само выражение, приведя его к виду B n · C . После этого уже будем выносить множители:

( — 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = = ( — 2 · 0 , 3 · 7 ) 4 · 11 4 = ( — 4 , 2 ) 4 · 11 4 = = — 4 , 2 · 11 4 = 4 , 2 · 11 4

Ответ: ( — 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = — 4 , 2 · 11 4 = 4 , 2 · 11 4 .

Разберем более подробно тот случай, когда подкоренное выражение требует предварительного преобразования. Здесь есть несколько моментов, которые нужно дополнительно пояснить.

Предварительное преобразование подкоренного выражения

Мы уже отмечали, что выражение под корнем не всегда имеет удобный для нас вид. Часто корень дан как A n , и множитель, который нужно вынести, не представлен в явном виде. Иногда это обозначено в условии, но довольно часто множитель приходится определять самостоятельно. Посмотрим, как надо действовать в этих случаях.

Допустим, нам надо вынести заранее определенный множитель B . Естественно, подкоренное выражение должно быть таким, чтобы эта операция была возможна. Тогда для преобразования A n в B n · C n достаточно определить второй множитель, т.е. вычислить значение C из выражения A = B n · C .

Условие: есть выражение 24 · x 3 . Вынесите из-под знака корня множитель 2 3 .

Здесь мы имеем n = 3 , A = 24 · x , B 3 = 2 3 . Тогда из A = B n · С вычисляем C = A : ( B n ) = 24 · x : ( 2 3 ) = 3 · x .

Значит, 24 · x 3 = 2 3 · 3 · x 3 . Подкоренное выражение имеет нужный нам вид, и мы можем воспользоваться правилом для нечетного показателя и подсчитать: 24 · x 3 = 2 3 · 3 · x 3 = 2 · 3 · x 3 .

Ответ: 24 · x 3 = 2 · 3 · x 3 .

А как быть в случае, если множитель, который нужно вынести, не указан? Тогда у нас есть определенная свобода выбора, и мы можем использовать несколько подходов к решению задачи.

Допустим, нам дано выражение, под корнем у которого стоит степень или произведение нескольких степеней. В таком случае, зная основные свойства степени, мы можем преобразовать выражение в удобный для нас вид с очевидно указанными множителями для вынесения.

Условие: необходимо вынести множитель из-под корня в трех выражениях – 2 4 · 5 4 , 2 7 · 5 4 , 2 22 · 5 4 .

Преобразование первого выражения не представляет особой сложности, т.к. подобные примеры мы уже разбирали. Сразу вычисляем: 2 4 · 5 4 = 2 · 5 4 = 2 · 5 4 .

Во втором примере легко догадаться, как преобразовать подкоренное выражение: нужно просто представить 2 7 как 2 4 · 2 3 .

2 7 · 5 4 = 2 4 · 2 3 · 5 4 = 2 4 · 40 4 = 2 · 40 4 = 2 · 40 4

В последнем примере также нужно начать с преобразования подкоренного выражения. Сразу отметим, что итоговый вид будет таким:

Теперь покажем, как именно прийти к этому виду. Сначала выполняем деление 22 на 4 , получаем 5 с остатком 2 (если нужно, повторите, как правильно выполнять деление с остатком). Иначе говоря, 22 можно рассматривать как 4 · 5 + 2 . Используя свойства степени, можем записать:

2 22 + 2 5 · 4 + 2 = 2 5 · 4 · 2 2 = ( 2 5 ) 4 · 2 2

2 22 · 5 4 = ( 2 5 ) 4 · 2 2 · 5 4 = ( 2 5 ) 4 · 20 4 = = 2 5 · 20 4 = 32 · 20 4

Ответ: 1 ) 2 4 · 5 4 = 2 · 5 4 , 2 ) 2 7 · 5 4 = 2 · 40 4 , 3 ) 2 22 · 5 4 = 32 · 20 4 .

Если выражение под корнем не является степенью или произведением степеней, надо попробовать представить его в таком виде. Чаще всего встречаются следующие случаи.

Подкоренное выражение – натуральное составное число. Тогда мы сразу можем увидеть нужные множители, которые надо вынести из-под знака корня, предварительно разложив данное число на простые множители.

Условие: выполните вынесение множителя из-под знака корня в следующих выражениях: 1 ) 45 ; 2 ) 135 ; 3 ) 3456 ; 4 ) 102 .

  1. Выполняем разложение 45 на простые множители.

То есть 45 = 3 · 3 · 5 = 3 2 · 5 , а 45 = 3 2 · 5 . В этом выражении видно, что выносить мы будем множитель 3 2 . Вычисляем:

  1. Теперь представим в нужном виде число 135 и получим: 135 = 3 · 3 · 3 · 5 = 3 3 · 15 . Иначе можно записать, что 3 2 · 3 · 5 = 3 2 · 15 . Следовательно, 135 = 3 2 · 15 . Мы видим, что вынесению из-под знака корня подлежит множитель 3 2 :
  1. Разложим на простые множители число 3456 :

3456 1728 864 432 216 108 54 27 9 3 1 2 2 2 2 2 2 2 3 3 3

У нас получилось, что 3456 = 2 7 · 3 3 , а 3456 = 2 7 · 3 3 . Поскольку 2 7 = 2 3 · 2 + 1 = ( 2 3 ) 2 · 2 и 3 3 = 3 2 · 3 , то 2 7 · 3 3 = ( 2 3 ) 2 · 2 · 3 2 · 3 = ( 2 3 ) 2 · 3 2 · 6 = = 2 3 · 3 · 6 = 24 · 6

  1. Представим натуральное число 102 как произведение простых множителей и получим 2 · 3 · 17 . Видим, что все множители имеют показатель, равный единице, а показатель корня в этом примере равен двум. Следовательно, в данном примере ни один множитель не нужно выносить из-под знака корня, то есть такое действие для 102 нецелесообразно.

Ответ: 1 ) 45 = 3 · 5 ; 2 ) 135 = 3 · 15 ; 3 ) 3456 = 24 · 6 ; 4 ) 102 .

Теперь разберем, как решать примеры, у которых подкоренное выражение представлено в виде обыкновенной дроби. В этом случае следует числитель и знаменатель разложить на простые множители и посмотреть, можно ли вынести какие-то из них за знак корня. Если у нас есть десятичная дробь или смешанное число, предварительно заменяем их обыкновенными дробями, после чего переходим от корня отношения к отношению корней.

Условие: выполните вынесение множителя за корень в выражении 200 · 0 , 000189 · x 3 и упростите его.

Для начала перейдем от десятичной дроби к обыкновенной и разложим ее числитель и знаменатель на простые множители.

0 , 189 = 189 1000000 = 3 3 · 7 2 6 · 5 6

Используя свойства степени, перепишем выражение в следующем виде:

Подставим получившееся выражение в исходное и получим:

200 · 0 , 000189 · x 3 = = 200 · 3 2 2 · 5 2 3 · 7 · x 3 = = 200 · 3 2 2 · 5 2 · 7 · x 3 = 6 · 7 · x 3

К такому же ответу можно прийти и с помощью других преобразований:

200 · 0 , 000189 · x 3 = = 200 · 189 1000000 · x 3 = 200 · 189 1000000 3 · x 3 = = 200 · 189 3 1000000 3 · x 3 = 200 · 3 3 · 7 3 100 3 3 · x 3 = = 200 · 3 · 7 3 100 · x 3 = 6 · 7 3 · x 3 = 6 · 7 · x 3

Ответ: 200 · 0 , 000189 · x 3 = 6 · 7 · x 3 .

Иными словами, для обнаружения множителя, который можно вынести за знак корня, можно преобразовывать подкоренное выражение любыми допустимыми способами.

Условие: выполните упрощение иррационального выражения 2 · ( 3 + 2 · 2 ) .

Мы можем преобразовать выражение в скобках как 2 + 2 · 2 + 1 и далее как 2 2 + 2 · 2 · 1 + 1 2 .

То, что у нас получилось, можно свернуть в квадрат суммы с помощью формулы сокращенного умножения: 2 2 + 2 · 2 · 1 + 1 = 2 + 1 2 .

В итоге: 2 · 3 + 2 · 2 = 2 · 2 + 1 2 . Теперь выносим 2 + 1 2 за знак корня и упрощаем выражение:

2 · 2 + 1 2 = 2 · 2 + 1 = = 2 · 2 + 1 = 2 + 2

Ответ: 2 · 3 + 2 · 2 = 2 + 2 .

Теперь посмотрим, как вынести из-под знака корня выражение, содержащее переменные. В целом можно сказать, что для этого используются те же методы, что и при работе с числами.

Условие: вынесите множитель из-под знака корня в выражениях ( x — 5 ) 5 4 и ( x — 5 ) 6 4 .

  1. Выполняем преобразование в первом примере.

( x — 5 ) 5 4 = ( x — 5 ) 4 · x — 5 4 = x — 5 · x — 5 4

Знак модуля можно опустить. Посмотрим, каким условием определяется область допустимых значений переменной для исходного выражения. Таким условием будет неравенство ( x − 5 ) 5 ≥ 0 . Для его решения выбираем метод интервалов и получаем x ≥ 5 . Если значение x принадлежит области допустимых значений, то значением выражения x — 5 будет неотрицательное число. Значит, можем записать следующее:

x — 5 · x — 5 4 = x — 5 · x — 5 4

  1. ( x — 5 ) 6 4 = ( x — 5 ) 4 · x — 5 2 4 = = x — 5 · ( x — 5 ) 2 4 = x — 5 · x — 5 2 4

Выполним сокращение показателей корня и степени на два. Обратимся к таблице результатов из статьи о преобразовании иррациональных выражений, о которой мы говорили выше. Возьмем из нее следующий результат: выражение A m n · m можно заменить на A n при условии, что m и n – натуральные числа. Следовательно,

x — 5 · x — 5 2 4 = x — 5 · x — 5

Нужно ли здесь убирать знак модуля? Посмотрим на область допустимых значений данного выражения: ее составляют все действительные числа, поскольку ( x − 5 ) 6 ≥ 0 для любого x . При этом значения x − 5 могут быть больше 0 , если x > 5 , равными 0 или отрицательными. Значит, оставляем выражение в виде x — 5 · x — 5 или представляем его в виде системы уравнений

( x — 5 ) · x — 5 , x ≥ 5 ( 5 — x ) · 5 — x , x 5

Ответ: 1 ) ( x — 5 ) 5 4 = ( x — 5 ) · x — 5 4 ; 2 ) ( x — 5 ) 6 4 = x — 5 · x — 5 .

Условие: выполните упрощение выражения x 5 + 2 · x 4 · y + x 3 · y 2 .

Выносим за скобки x 3 и получаем x 3 · ( x 2 + 2 · x · y + y 2 ) . Выражение в скобках можно представить в виде квадрата суммы: x 3 · ( x 2 + 2 · x · y + y 2 ) = x 3 · ( x + y ) 2 .

Теперь видим множители, подлежащие вынесению из-под корня: x 3 · ( x + y ) 2 = x 2 · x · ( x + y ) 2 = x · x + y · x

Также мы можем убрать знаки модуля, в которых находится x, поскольку область допустимых значений будет определена условием x 5 + 2 · x 4 · y + x 3 · y 2 ≥ 0 . Оно равносильно x 3 · ( x + y ) 2 ≥ 0 , а из него можно сделать вывод, что x ≥ 0 . У нас получилось, что x · x + y · x .

Ответ: x 5 + 2 · x 4 · y + x 3 · y 2 = x · x + y · x .

Это все, что мы хотели бы вам рассказать о вынесении множителя за знак корня. В следующей статье мы разберем обратное действие – внесение множителя под корень.

Источник

Оцените статью
Юридический портал
Adblock
detector