Как расписать выражение в кубе

Куб суммы и разности двух выражений

Формула куба суммы

$$ = a(a^2+2ab+b^2 )+b(a^2+2ab+b^2 ) = a^3+2a^2 b+ab^2+a^2 b+2ab^2+b^3 = $$

Мы получили формулу куба суммы двух выражений:

Куб суммы двух выражений равен кубу первого выражения, плюс утроенное произведение квадрата первого выражения на второе выражение, плюс утроенное произведение первого выражения на квадрат второго выражения, плюс куб второго выражения.

Вместо a и b в формуле могут быть любые одночлены (и даже многочлены), которые нужно подставить. Например:

Формула куба разности

Возведем в куб разность (a-b):

$$ = a(a^2-2ab+b^2 )-b(a^2-2ab+b^2 ) = a^3-2a^2 b+ab^2-a^2 b+2ab^2-b^3 = $$

Мы получили формулу куба разности двух выражений:

Куб разности двух выражений равен кубу первого выражения, минус утроенное произведение квадрата первого выражения на второе выражение, плюс утроенное произведение первого выражения на квадрат второго выражения, минус куб второго выражения.

Вместо a и b в формуле могут быть любые одночлены (и даже многочлены), которые нужно подставить. Например:

Не забывайте о втором и третьем слагаемом в формулах куба двучленов!

Не путайте знаки «+» и «-» перед слагаемыми!

Примеры

Пример 1. Представьте в виде многочлена

а) $ (x+5)^3 = x^3+3\cdot x^2\cdot5+3\cdot x\cdot5^2+5^3 = x^3+15x^2+75x+125$

б) $ (9-z)^3 = 9^3-3\cdot9^2\cdot z+3\cdot9\cdot z^2-z^3 = 729-243+27z^2-z^3 $

в) $(5b-3c)^3 = (5b)^3-3\cdot(5b)^2\cdot3c+3\cdot5b\cdot(3c)^2-(3c)^3 =$

г) $(2mk+1)^3 = (2mk)^3+3\cdot(2mk)^2\cdot1+3\cdot2mk\cdot1^2+1^3 =$

Пример 2. Упростите выражение:

а) $(a+2)^3-(a-2)^3 = a^3+3a^2\cdot2+3a\cdot2^2+2^3-(a^3-3a^2\cdot2+3a\cdot2^2-2^3 )= $

б) $(x-3y)^3+9xy(x-3y) = x^3-3x^2\cdot3y+3x\cdot(3y)^2-27y^3+9x^2 y-27xy^2 =$

в) $(x+y)^3-x(x-y)^2 = x^3-3x^2 y+3xy^2+y^3-x(x^2-2xy+y^2 ) =$

$= x^3-3x^2 y+3xy^2+y^3-x^3+2x^2 y-xy^2 = -x^2 y+2xy^2+y^3$

$-(k^3+3k^2\cdot3m+3k\cdot(3m)^2+(3m)^3 ) = 3k^2 m+18km^2+27m^3- $

$-k^3-9k^2 m-27km^2-27m^3 = -6k^2 m-9km^2-k^3 $

Пример 3. Найдите значение выражения:

a) $a^3-b^3-3ab(a-b)$ при a = -7 и b = -17

$a^3-b^3-3ab(a-b) = a^3-b^3-3a^2 b+3ab^2 = a^3-3a^2 b+3ab^2-b^3 =$

Подставляем: $(-7-(-17) )^3 = 10^3 = 1000$

б) $3ab(a+b)+a^3+b^3$ при a = -3 и b = 13

$ 3ab(a+b)+a^3+b^3 = 3a^2 b+3ab^2+a^3+b^3 = a^3+3a^2 b+3ab^2+b^3 = $

Подставляем: $(-3+13)^3 = 10^3 = 1000$

Пример 4. Решите уравнение:

$1-3\cdot4x+3\cdot(4x)^2-(4x)^3+48\cdot \frac<4> <3>x^3-48x^2 = 0 $

Пример 5*. Дайте геометрическое объяснение формуле куба суммы (аналогично квадрату суммы – см. §21 данного справочника, но для кубов в пространстве).

Рассмотрим куб со стороной (a+b) и вписанный в один из его углов куб со стороной b.

Объемы кубов $V_ = (a+b)^3,V_b = b^3$ Объем прямоугольного параллелепипеда, закрашенного оранжевым цветом: $V_ <ор>= a(a+b)^2$

Объем прямоугольного параллелепипеда, закрашенного синим: $V_ <син>= b(a+b)^2$

Источник

Как использовать куб суммы (a + b) 3

В предыдущих уроках мы рассмотрели два способа разложения многочлена на множители: вынесение общего множителя за скобки и способ группировки.

В этом уроке мы рассмотрим еще один способ разложения многочлена на множители — применение формул сокращённого умножения.

Прежде чем перейти к этому уроку обязательно выучите наизусть все формулы сокращенного умножения.

Рекомендуем каждую формулу прописать не менее 12 раз. Для лучшего запоминания выпишите все формулы сокращённого умножения себе на небольшую шпаргалку.

Вспомним, как выглядит формула куба суммы.

(a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3

Формула куб суммы не очень проста для запоминания, поэтому рекомендуем использовать специальный способ для её запоминания.

Важно понимать, что любая формула сокращённого умножения действует и в обратную сторону .

a 3 + 3a 2 b + 3ab 2 + b 3 = (a + b) 3

Как возвести в куб многочлен

Рассмотрим пример. Необходимо возвести в куб многочлен.

Используем формулу куба суммы. Только вместо « a » у нас будет « x », а вместо « b » будет « 2y ».

Часто возводят многочлен в куб следующим образом:

Это неверно! Для возведения многочлена в куб необходимо использовать формулу сокращенного умножения: (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3

Применение куба суммы для разложения многочлена на множители

Рассмотрим многочлен. Требуется разложить его на множители, используя формулу куба суммы.

Обратите внимание, что многочлен « m 3 + 3m 2 n + 3mn 2 + n 3 » напоминает правую часть формулы « a 3 + 3a 2 b + 3ab 2 + b 3 », только вместо « a » стоит « m », а на месте « b » стоит « n ».

Используем для многочлена « m 3 + 3m 2 n + 3mn 2 + n 3 » формулу куба суммы.

Рассмотрим пример сложнее. Требуется разложить многочлен на множители.

В этом многочлене не так очевидно, что будет являться в формуле « a », а что « b ».

Представим многочлен « 27x 3 + 54x 2 + 36x + 8 » в виде « a 3 + 3a 2 b + 3ab 2 + b 3 ».

Обратим внимание, что « 27x 3 » — это « (3x) 3 », значит « a » в исходном многочлене — это « 3x ».

Чтобы понять, что является « b » в исходном многочлене, рассмотрим последний одночлен — « 8 ». Вспомним, что « 8 » — это « 2 3 », значит « b » в исходном многочлене — это « 2 ».

Рассмотрим одночлены посередине « 54x 2 » и « 36x ». При сравнении многочлена с кубом суммы « a 3 + 3a 2 b + 3ab 2 + b 3 » можно понять, что эти одночлены должны быть « 3a 2 b » и « 3ab 2 соответсвенно.

Преобразуем одночлены « 54x 2 » и « 36x » в виде « 3a 2 b » и « 3ab 2 ». С учетом того, что ранее мы нашли, что в нашем многочлене « a » — это « 3x », а « b » — это « 2 ».

Внимательно проверяйте, правильно ли вы разложили числовые коэффициенты.

Проверим, верно ли мы разложили одночлены « 54x 2 » и « 36x ».

  • 54x 2 = 3 · (3x) 2 · 2 = 3 · 9x 2 · 2 = 27x 2 · 2 = 54x 2 (верно)
  • 36x = 3 · 3x · (2) 2 = 3 · 3x · 4 = 9x · 4 = 36x (верно)

После необходимых преобразований становится видно, что многочлен
« 27x 3 + 54x 2 + 36x + 8 » является правой частью формулы куба суммы
« (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 ».

Используем формулу куба суммы и решим пример до конца.

Источник

Формулы сокращенного умножения: таблица, примеры использования

Формулы сокращенного умножения (ФСУ) применяются для возведения в степень и умножения чисел и выражений. Часто эти формулы позволяют произвести вычисления более компактно и быстро.

В данной статье мы перечислим основные формулы сокращенного умножения, сгруппируем их в таблицу, рассмотрим примеры использования этих формул, а также остановимся на принципах доказательств формул сокращенного умножения.

Формулы сокращенного умножения. Таблица

Впервые тема ФСУ рассматривается в рамках курса «Алгебра» за 7 класс. Приведем ниже 7 основных формул.

Формулы сокращенного умножения

  1. формула квадрата суммы: a + b 2 = a 2 + 2 a b + b 2
  2. формула квадрата разности: a — b 2 = a 2 — 2 a b + b 2
  3. формула куба суммы: a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3
  4. формула куба разности: a — b 3 = a 3 — 3 a 2 b + 3 a b 2 — b 3
  5. формула разности квадратов: a 2 — b 2 = a — b a + b
  6. формула суммы кубов: a 3 + b 3 = a + b a 2 — a b + b 2
  7. формула разности кубов: a 3 — b 3 = a — b a 2 + a b + b 2

Буквами a, b, c в данных выражениях могут быть любые числа, переменные или выражения. Для удобства использования лучше выучить семь основных формул наизусть. Сведем их в таблицу и приведем ниже, обведя рамкой.

Первые четыре формулы позволяют вычислять соответственно квадрат или куб суммы или разности двух выражений.

Пятая формула вычисляет разность квадратов выражений путем произведения их суммы и разности.

Шестая и седьмая формулы — соответственно умножение суммы и разности выражений на неполный квадрат разности и неполный квадрат суммы.

Формула сокращенного умножения иногда еще называют тождествами сокращенного умножения. В этом нет ничего удивительного, так как каждое равенство представляет собой тождество.

При решении практических примеров часто используют формулы сокращенного умножения с переставленными местами левыми и правыми частями. Это особенно удобно, когда имеет место разложение многочлена на множители.

Дополнительные формулы сокращенного умножения

Не будем ограничиваться курсом 7 класса по алгебре и добавим в нашу таблицу ФСУ еще несколько формул.

Во-первых, рассмотрим формулу бинома Ньютона.

a + b n = C n 0 · a n + C n 1 · a n — 1 · b + C n 2 · a n — 2 · b 2 + . . + C n n — 1 · a · b n — 1 + C n n · b n

Здесь C n k — биномиальные коэффициенты, которые стоят в строке под номером n в треугольнике паскаля. Биномиальные коэффициенты вычисляются по формуле:

C n k = n ! k ! · ( n — k ) ! = n ( n — 1 ) ( n — 2 ) . . ( n — ( k — 1 ) ) k !

Как видим, ФСУ для квадрата и куба разности и суммы — это частный случай формулы бинома Ньютона при n=2 и n=3соответственно.

Но что, если слагаемых в сумме, которую нужно возвести в степень, больше, чем два? Полезной будет формула квадрата суммы трех, четырех и более слагаемых.

a 1 + a 2 + . . + a n 2 = a 1 2 + a 2 2 + . . + a n 2 + 2 a 1 a 2 + 2 a 1 a 3 + . . + 2 a 1 a n + 2 a 2 a 3 + 2 a 2 a 4 + . . + 2 a 2 a n + 2 a n — 1 a n

Как читать эту формулу? Квадрат суммы n слагаемых равен сумме квадратов всех слагаемых и удвоенных произведений всех возможных пар этих слагаемых.

Еще одна формула, которая может пригодится — формула формула разности n-ых степеней двух слагаемых.

a n — b n = a — b a n — 1 + a n — 2 b + a n — 3 b 2 + . . + a 2 b n — 2 + b n — 1

Эту формулу обычно разделяют на две формулы — соответственно для четных и нечетных степеней.

Для четных показателей 2m:

a 2 m — b 2 m = a 2 — b 2 a 2 m — 2 + a 2 m — 4 b 2 + a 2 m — 6 b 4 + . . + b 2 m — 2

Для нечетных показателей 2m+1:

a 2 m + 1 — b 2 m + 1 = a 2 — b 2 a 2 m + a 2 m — 1 b + a 2 m — 2 b 2 + . . + b 2 m

Формулы разности квадратов и разности кубов, как вы догадались, являются частными случаями этой формулы при n = 2 и n = 3 соответственно. Для разности кубов b также заменяется на — b .

Как читать формулы сокращенного умножения?

Дадим соответствующие формулировки для каждой формулы, но сначала разберемся с принципом чтения формул. Удобнее всего делать это на примере. Возьмем самую первую формулу квадрата суммы двух чисел.

Говорят: квадрат суммы двух выражений a и b равен сумме квадрата первого выражения, удвоенного произведения выражений и квадрата второго выражения.

Все остальные формулы читаются аналогично. Для квадрата разности a — b 2 = a 2 — 2 a b + b 2 запишем:

квадрат разности двух выражений a и b равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражения.

Прочитаем формулу a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 . Куб суммы двух выражений a и b равен сумме кубов этих выражений, утроенного произведения квадрата первого выражения на второе и утроенного произведения квадрата второго выражения на первое выражение.

Переходим к чтению формулы для разности кубов a — b 3 = a 3 — 3 a 2 b + 3 a b 2 — b 3 . Куб разности двух выражений a и b равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе, плюс утроенное произведение квадрата второго выражения на первое выражение, минус куб второго выражения.

Пятая формула a 2 — b 2 = a — b a + b (разность квадратов) читается так: разность квадратов двух выражений равна произведению разности и суммы двух выражений.

Выражения типа a 2 + a b + b 2 и a 2 — a b + b 2 для удобства называют соответственно неполным квадратом суммы и неполным квадратом разности.

С учетом этого, формулы суммы и разности кубов прочитаются так:

Сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности.

Разность кубов двух выражений равна произведению разности этих выражений на неполный квадрат их суммы.

Доказательство ФСУ

Доказать ФСУ довольно просто. Основываясь на свойствах умножения, проведем умножение частей формул в скобках.

Для примера рассмотрим формулу квадрата разности.

Чтобы возвести выражение во вторую степень нужно это выражение умножить само на себя.

a — b a — b = a 2 — a b — b a + b 2 = a 2 — 2 a b + b 2 .

Формула доказана. Остальные ФСУ доказываются аналогично.

Примеры применения ФСУ

Цель использования формул сокращенного умножения — быстрое и краткое умножение и возведение выражений в степень. Однако, это не вся сфера применения ФСУ. Они широко используются при сокращении выражений, сокращении дробей, разложении многочленов на множители. Приведем примеры.

Упростим выражение 9 y — ( 1 + 3 y ) 2 .

Применим формулу суммы квадратов и получим:

9 y — ( 1 + 3 y ) 2 = 9 y — ( 1 + 6 y + 9 y 2 ) = 9 y — 1 — 6 y — 9 y 2 = 3 y — 1 — 9 y 2

Сократим дробь 8 x 3 — z 6 4 x 2 — z 4 .

Замечаем, что выражение в числителе — разность кубов, а в знаменателе — разность квадратов.

8 x 3 — z 6 4 x 2 — z 4 = 2 x — z ( 4 x 2 + 2 x z + z 4 ) 2 x — z 2 x + z .

8 x 3 — z 6 4 x 2 — z 4 = ( 4 x 2 + 2 x z + z 4 ) 2 x + z

Также ФСУ помогают вычислять значения выражений. Главное — уметь заметить, где применить формулу. Покажем это на примере.

Возведем в квадрат число 79 . Вместо громоздких вычислений, запишем:

79 = 80 — 1 ; 79 2 = 80 — 1 2 = 6400 — 160 + 1 = 6241 .

Казалось бы, сложное вычисление проведено быстро всего лишь с использованием формул сокращенного умножения и таблицы умножения.

Еще один важный момент — выделение квадрата двучлена. Выражение 4 x 2 + 4 x — 3 можно преобразовать в вид 2 x 2 + 2 · 2 · x · 1 + 1 2 — 4 = 2 x + 1 2 — 4 . Такие преобразования широко используются в интегрировании.

Источник

Оцените статью
Юридический портал
Adblock
detector