Дифференциал косинуса в кубе

Дифференциал функции

Полный дифференциал для функции двух переменных:

  1. Примеры
    ≡ x^2/(x+2)
    cos 2 (2x+π) ≡ (cos(2*x+pi))^2
    ≡ x+(x-1)^(2/3)

Пусть f(x) дифференцируема в точке x0 и f ‘(x0)≠0 , тогда ∆y=f’(x0)∆x + α∆x, где α= α(∆x) →0 при ∆x→0. Величина ∆y и каждое слагаемое правой части являются бесконечно малыми величинами при ∆x→0. Сравним их: , то есть α(∆x)∆x – бесконечно малая более высокого порядка, чем f’(x0)∆x.
, то есть ∆y

f’(x0)∆x. Следовательно, f’(x0)∆x представляет собой главную и вместе с тем линейную относительно ∆x часть приращения ∆y (линейная – значит содержащая ∆x в первой степени). Это слагаемое называют дифференциалом функции y=f(x) в точке x0 и обозначают dy(x0) или df(x0). Итак, для произвольных значений x
dy=f′(x)∆x. (1)
Полагают dx=∆x, тогда
dy=f′(x)dx. (2)

Пример . Найти производные и дифференциалы данных функций.
а) y=4 tg2 x
Решение:

дифференциал:
б)
Решение:

дифференциал:
в) y=arcsin 2 (lnx)
Решение:

дифференциал:
г)
Решение:
=
дифференциал:

Пример . Для функции y=x 3 найти выражение для ∆y и dy при некоторых значениях x и ∆x.
Решение. ∆y = (x+∆x) 3 – x 3 = x 3 + 3x 2 ∆x +3x∆x 2 + ∆x 3 – x 3 = 3x 2 ∆x+3x∆x 2 +∆x 3 ; dy=3x 2 ∆x (взяли главную линейную относительно ∆x часть ∆y). В данном случае α(∆x)∆x = 3x∆x 2 + ∆x 3 .

Источник

Производная косинуса: (cos x)′

Производная по переменной x от косинуса x равна минус синусу x:
( cos x )′ = – sin x .

Доказательство

Чтобы вывести формулу производной косинуса, воспользуемся определением производной:
.

Преобразуем это выражение, чтобы свести его к известным математическим законам и правилам. Для этого нам нужно знать четыре свойства.
1) Тригонометрические формулы. Нам понадобится следующая формула:
(1) ;
2) Свойство непрерывности функции синус:
(2) ;
3) Значение первого замечательного предела:
(3) ;
4) Свойство предела от произведения двух функций:
Если и , то
(4) .

Применяем эти законы к нашему пределу. Сначала преобразуем алгебраическое выражение
.
Для этого применим формулу
(1) ;
В нашем случае
; . Тогда
;
;
;
.

Сделаем подстановку . При , . Используем свойство непрерывности (2):
.

Сделаем такую же подстановку и применим первый замечательный предел (3):
.

Поскольку пределы, вычисленные выше, существуют, то применяем свойство (4):

.

Тем самым мы получили формулу производной косинуса.

Примеры

Рассмотрим простые примеры нахождения производных от функций, содержащих косинус. Найдем производные от следующих функций:
y = cos 2x; y = cos 3x; y = cos nx; y = cos 2 x ; y = cos 3 x и y = cos n x .

Пример 1

Найти производные от cos 2x, cos 3x и cos nx.

Исходные функции имеют похожий вид. Поэтому мы найдем производную от функции y = cos nx . Затем, в производную от cos nx , подставим n = 2 и n = 3 . И, тем самым, получим формулы для производных от cos 2x и cos 3x .

Итак, находим производную от функции
y = cos nx .
Представим эту функцию от переменной x как сложную функцию, состоящую из двух функций:
1) Функции , зависящей от переменной : ;
2) Функции , зависящей от переменной : .
Тогда исходная функция является сложной (составной) функцией, составленной из функций и :
.

Найдем производную от функции по переменной x:
.
Найдем производную от функции по переменной :
.
Применяем формулу производной сложной функции.
.
Подставим :
(П1) .

Теперь, в формулу (П1) подставим и :
;
.

Пример 2

Найти производные от косинуса в квадрате, косинуса в кубе и косинуса в степени n:
y = cos 2 x ; y = cos 3 x ; y = cos n x .

В этом примере также функции имеют похожий вид. Поэтому мы найдем производную от самой общей функции – косинуса в степени n:
y = cos n x .
Затем подставим n = 2 и n = 3 . И, тем самым, получим формулы для производных от косинуса в квадрате и косинуса в кубе.

Итак, нам нужно найти производную от функции
.
Перепишем ее в более понятном виде:
.
Представим эту функцию как сложную функцию, состоящую из двух функций:
1) Функции , зависящей от переменной : ;
2) Функции , зависящей от переменной : .
Тогда исходная функция является сложной функцией, составленной из двух функций и :
.

Находим производную от функции по переменной x:
.
Находим производную от функции по переменной :
.
Применяем правило дифференцирования сложной функции.
.
Подставим :
(П2) .

Далее мы можем применить формулу для произведения синуса и косинуса:
.
Тогда
.

Производные высших порядков

Заметим, что производную от cos x первого порядка можно выразить через косинус следующим образом:
.

Найдем производную второго порядка, используя формулу производной сложной функции:

.
Здесь .

Заметим, что дифференцирование cos x приводит к увеличению его аргумента на . Тогда производная n-го порядка имеет вид:
(5) .

Более строго эту формулу можно доказать с помощью метода математической индукции. Доказательство для n-й производной синуса изложено на странице “Производная синуса”. Для n-й производной косинуса доказательство точно такое. Нужно только во всех формулах заменить sin на cos.

Автор: Олег Одинцов . Опубликовано: 05-03-2017

Источник

Интеграл косинуса

Интеграл косинуса по таблице интегрирования основных элементарных функций равен:

Словами это запомнить легче и звучит так: интеграл косинуса равен сумме синуса и константы. Выполним разбор частных примеров.

Найти интеграл от косинуса 2х: $$ \int \cos 2x dx $$

2х под косинусом называется двойным углом. Из-за того, что аргумент косинуса равен $ 2x $, то нельзя сразу применить формулу. Нужно чтобы $ 2x $ находилось и под знаком дифференциала.

Выполним подведение $ 2x $ под дифференциал:

$$ \frac<1><2>\int \cos 2x d(2x) = \frac<1><2>\sin 2x + C $$

Перед интегралом появилась дробь $ \frac<1> <2>$, так как $ d(2x) = 2 dx $ и нам необходимо уничтожить лишнюю двойку.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ $$ \int \cos 2x dx = \sin 2x + C $$

Данный интеграл можно взять двумя методами: подведением $ \sin x $ под знак дифференциала $ \cos x dx = d(\sin x) $ или заменой $ t = \sin x, dt = \cos x dx $

Проще будет решить внесением под дифференциал. Получаем:

$$ \int \sin x \cos x dx = \int \sin x d(\sin x) = \frac<\sin^2 x> <2>+ C $$

Пример 2
Найти интеграл от произведения синуса и косинуса: $$ \int \sin x \cos x dx $$
Решение
Ответ
$$ \int \sin x \cos x dx = \frac<\sin^2 x> <2>+ C $$

Выражение стоящее под знаком интеграла полностью готово к непосредственному интегрированию. Но стоит заметить, что интеграл определенный, а это значит нужно воспользоваться дополнительно формулой Ньютона-Лейбница: $ \int_a^b f(x) dx = F(b) — F(a) $, где $ F(x) $ — это первообразная функции.

$$ \int_0^\pi \cos x dx = \sin x \bigg |_0^\pi = \sin\pi — \sin 0 = -1 — 0 = -1 $$

Ответ $$ \int_0^\pi \cos x dx = -1 $$

Непосредственно взять интеграл не получится, так как косинус в квадрате не является табличной функцией, поэтому воспользуемся еще одной формулой понижения степени:

Подставляем правую часть формулы в интеграл:

$$ \int \cos^2 x dx = \int \frac<1+\cos 2x> <2>dx = \frac<1> <2>\int (1+\cos 2x) dx = $$

$$ = \frac<1><2>\int 1dx + \frac<1> <2>\int \cos 2x dx = \frac<1><2>x + \frac<1><4>\sin 2x + C $$

Источник

Интегрирование тригонометрических функций: методы и примеры

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Подынтегральное выражение можно преобразовать из произведения тригонометрических функций в сумму

Рассмотрим интегралы, в которых подынтегральная функция представляет собой произведение синусов и косинусов первой степени от икса, умноженного на разные множители, то есть интегралы вида

(1)

Воспользовавшись известными тригонометрическими формулами

(2)
(3)
(4)
можно преобразовать каждое из произведений в интегралах вида (31) в алгебраическую сумму и проинтегрировать по формулам

(5)

(6)

Применяя далее формулу (5), получим

Решение. По формуле (3) при получаем следующее преобразование подынтегрального выражения:

Применяя далее формулу (6), получим

Решение. По формуле (4) при получаем следующее преобразование подынтегрального выражения:

Применяя формулу (6), получим

Интеграл произведения степеней синуса и косинуса одного и того же аргумента

Рассмотрим теперь интегралы от функций, представляющих собой произведение степеней синуса и косинуса одного и того же аргумента, т.е.

(7)

В частных случаях один из показателей (m или n) может равняться нулю.

При интегрировании таких функций используется то, что чётную степень косинуса можно выразить через синус, а дифференциал синуса равен cos x dx (или чётную степень синуса можно выразить через косинус, а дифференциал косинуса равен — sin x dx ) .

Следует различать два случая: 1) хотя бы один из показателей m и n нечётный; 2) оба показателя чётные.

Пусть имеет место первый случай, а именно показатель n = 2k + 1 — нечётный. Тогда, учитывая, что

Подынтегральное выражение представлено в таком виде, что одна его часть – функция только синуса, а другая – дифференциал синуса. Теперь с помощью замены переменной t = sin x решение сводится к интегрированию многочлена относительно t. Если же только степень m нечётна, то поступают аналогично, выделяя множитель sinx, выражая остальную часть подынтегральной функции через cos x и полагая t = cos x . Этот приём можно использовать и при интегрировании частного степеней синуса и косинуса, когда хотя бы один из показателей — нечётный. Всё дело в том, что частное степеней синуса и косинуса — это частный случай их произведения: когда тригонометрическая функция находится в знаменателе подынтегрального выражения, её степень — отрицательная. Но бывают и случаи частного тригонометрических функций, когда их степени — только чётные. О них — следующем абзаце.

Если же оба показателя m и n – чётные, то, используя тригонометрические формулы

понижают показатели степени синуса и косинуса, после чего получится интеграл того же типа, что и выше. Поэтому интегрирование следует продолжать по той же схеме. Если же один из чётных показателей — отрицательный, то есть рассматривается частное чётных степеней синуса и косинуса, то данная схема не годится. Тогда используется замена переменной в зависимости от того, как можно преобразовать подынтегральное выражение. Такой случай будет рассмотрен в следующем параграфе.

Пример 4. Найти интеграл от тригонометрической функции

Решение. Показатель степени косинуса – нечётный. Поэтому представим

и произведём замену переменной t = sin x (тогда dt = cos x dx ). Тогда получим

Возвращаясь к старой переменной, окончательно найдём

Пример 5. Найти интеграл от тригонометрической функции

.

Решение. Показатель степени косинуса, как и в предыдущем примере – нечётный, но больше. Представим

и произведём замену переменной t = sin x (тогда dt = cos x dx ). Тогда получим

и получим

Возвращаясь к старой переменной, получаем решение

Пример 6. Найти интеграл от тригонометрической функции

Решение. Показатели степени синуса и косинуса – чётные. Поэтому преобразуем подынтегральную функцию так:

Во втором интеграле произведём замену переменной, полагая t = sin2x . Тогда (1/2)dt = cos2x dx . Следовательно,

Найти интеграл от тригонометрической функции самостоятельно, а затем посмотреть решение

Пример 7. Найти интеграл от тригонометрической функции

.

Использование метода замены переменой

Метод замены переменной при интегировании тригонометрических функций можно применять в случаях, когда в подынтегральном выражении присутствует только синус или только косинус, произведение синуса и косинуса, в котором или синус или косинус — в первой степени, тангенс или котангенс, а также частное чётных степеней синуса и косинуса одного и того же аргумента. При этом можно производить перестановки не только sinx = t и sinx = t , но и tgx = t и ctgx = t .

Пример 8. Найти интеграл от тригонометрической функции

.

Решение. Произведём замену переменной: , тогда . Получившееся подынтегральное выражение легко интегрируется по таблице интегралов:

.

Возвращаясь к первоначальной переменной, окончательно получаем:

Пример 9. Найти интеграл от тригонометрической функции

.

Решение. Преобразуем тангенс в отношение синуса и косинуса:

.

Произведём замену переменной: , тогда . Получившееся подынтегральное выражение представляет собой табличный интеграл со знаком минус:

.

Возвращаясь к первоначальной переменной, окончательно получаем:

.

Пример 10. Найти интеграл от тригонометрической функции

.

Решение. Произведём замену переменной: , тогда .

Преобразуем подынтегральное выражение, чтобы применить тригонометрическое тождество :

Производим замену переменной, не забывая перед интегралом поставить знак минус (смотрите выше, чему равно dt ). Далее раскладываем подынтегральное выражение на множители и интегрируем по таблице:

.

Возвращаясь к первоначальной переменной, окончательно получаем:

.

Найти интеграл от тригонометрической функции самостоятельно, а затем посмотреть решение

Пример 11. Найти интеграл от тригонометрической функции

.

Универсальная тригонометрическая подстановка

Универсальную тригонометрическую подстановку можно применять в случаях, когда подынтегральное выражение не подпадает под случаи, разобранные в предыдущих параграфах. В основном, когда синус или косинус (или и то, и другое) находятся в знаменателе дроби. Доказано, что синус и косинус можно заменить другим выражением, содержащим тангенс половины исходного угла следующим образом:

где .

Тогда .

Но заметим, что универсальная тригонометрическая подстановка часто влечёт за собой довольно сложные алгебраические преобразования, поэтому её лучше применять, когда никакой другой метод не работает. Разберём примеры, когда вместе с универсальной тригонометрической подстановкой используются подведение под знак дифференциала и метод неопределённых коэффициентов.

Пример 12. Найти интеграл от тригонометрической функции

.

Решение. Решение. Воспользуемся универсальной тригонометрической подстановкой. Тогда
.

Дроби в числителе и знаменателе умножаем на , а двойку выносим и ставим перед знаком интеграла. Тогда

Чтобы в результате преобразований прийти к табличному интегралу, попытаемся получить в знаменателе полный квадрат. Для этого умножим числитель и знаменатель подынтегрального выражения на 2. Применяем интегрирование подведением под знак дифференциала. Получим

К полученному результату преобразований можем теперь применить табличный интеграл 21. В результате получаем окончательное решение:

.

Пример 13. Найти интеграл от тригонометрической функции

.

Решение. Решение. Воспользуемся универсальной тригонометрической подстановкой. Тогда
.

Дроби в числителе и знаменателе умножаем на , а двойку выносим и ставим перед знаком интеграла. Тогда

.

Чтобы в результате преобразований прийти к табличному интегралу, попытаемся получить в знаменателе полный квадрат. Для этого умножим числитель и знаменатель подынтегрального выражения на 3. Применяем интегрирование подведением под знак дифференциала. Получим

К полученному результату преобразований можем теперь применить табличный интеграл 21. В результате получаем окончательное решение:

.

Пример 14. Найти интеграл от тригонометрической функции

.

Решение. Решение. Воспользуемся универсальной тригонометрической подстановкой. Тогда

Используем метод неопределённых коэффициентов. Получим следующее подынтегральное выражение:

Чтобы найти коэффициенты, решим систему уравнений:

Используем подведение под знак дифференциала:

К последнему слагаемому применяем замену переменной , тогда . Получаем:

Преобразуем и вернём на место первоначальную переменную и окончательно получим решение:

Источник

Оцените статью
Юридический портал
Adblock
detector
Пример 4
Найти интеграл от косинуса в квадрате: $$ \int \cos^2 x dx $$
Решение