Чем отличается плотность от объемного веса

Чем отличается плотность от объемного веса

Под плотностью понимается отношение массы сплошного тела к его объему, измеряемое обычно в г/см 3 .

Объёмный вес для пористых тел (дли сыпучих материалов, например, пресспорошков — «насыпной вес») — отношение массы тела к его полному (включая объем пор) объему. Объемный вес также измеряется обычно в г/см 3 .

Из этих определений вытекает, что различие между объемным весом и плотностью определяется наличием в твердом материале пор. Поэтому в технической практике используют понятие объемного веса лишь для материалов с большой пористостью, таких как бумага, пенопласт и т. п.

Если обозначить m — массу Образца; V — объем образца (включая объем пор); VП — объем пор в образце; D – плотность сплошного вещества; D 1 — объемный вес, то получим соотношения:

Полная пористость материала, г. е. отношение объема пор к полному объему:

может быть определена точным измерением объема целого образца и того же образца, измельченного в тонкий порошок; разность обоих объемов, отнесенная к объему целого образца, дает величину П.

Для точных измерений плотности применяют ряд методов: для определения плотности твердых тел — метод гидростатического взвешивания и метод пикнометра, которые дают точность до пятого знака, а при особо тщательных измерениях — до шестого знака; для определения плотности жидкостей — методы ареометра (точность до третьего или четвертого знака), гидростатического
взвешивания (точность при употреблении аналитических весов – до шестого знака, а при упрощенных измерениях с весами Вестфаля-Мора — до третьего знака) н пикнометра (точность до шестого знака).

При определении плотности с помощью пикнометра и гидростатического взвешивания можно определить плотность только твердых тел, не реагирующих с водой и не растворяющихся в ней.

Ареометр. Ареометр — узкий стеклянный поплавок, в нижней части которого находится груз, а в верхней части – шкала. Ареометр не должен касаться стенок сосуда, в который залита испытуемая жидкость. Погружать ареометр следует осторожно, чтобы часть его, выступающая из жидкости, не была смочена. Когда ареометр плавает в жидкости, то отсчет по шкале, совпадающей с верхним краем мениска жидкости, дает значение плотности.

Метод гидростатического взвешивания. Метод основан на уменьшении веса твердого тела, погруженного в жидкость, в соответствии с законом Архимеда.

Метод гидростатического взвешивания обладает простотой и быстротой выполнения измерения. Его погрешность при достаточно высокой точности поддержания температуры жидкости и образца не превышает 0.1 %. Погрешность взвешивания не должна превосходить ±0.2 мг при массе образца от 0.2 до 5.0 г.

Если метод применяется к жидкостям, к крючку чашки аналитических весов подвешивают на тонкой проволочке стеклянный «поплавок» с термометром и определяют веса: поплавка в воздухе G 1 ; поплавка, погруженного в дистиллированную воду G 2 ; поплавка, погруженного в испытуемую жидкость G 3 .

Искомая плотность вычисляется по формуле:

При измерении плотности твердых тел по методу гидростатического взвешивании испытуемый образец подвешивают к крючку чашки аналитических весов на тонкой проволочке и определяют веса: образца в воздухе G ; образца, погруженного в дистиллированную воду G 1 .

Затем снимают образец с проволочки и определяют вес g проволочки, которая должна быть погружена в воду приблизительно на ту же глубину, что и при предыдущем взвешивании.

Плотность рассчитывается по формуле:

При массовом измерении плотности жидкостей методом гидростатического взвешивания применяют специальные коромысловые гидростатические весы (весы Вестфаля—Мора); их устройство показано на рис. 1.

Рис. 1. Гидростатические весы (весы Вестфаля—Мора).

Они состоят из короткого плеча 1, заканчивающегося острием 6, и длинного плеча 2, на котором нанесены 10 вырезов, соответствующие 10 равным частям коромысла. На десятом вырезе с помощью крючка 3 подвешен
стеклянный поплавок 5 с термометром. При равновесии весов острие короткого плеча останавливается против неподвижного острия 7. Массы плеч коромысел и поплавка отрегулированы так, что весы находятся в равновесии, если поплавок находится в воздухе. К весам прилагается набор разновесов в виде рейтеров (А0, А, В и С). Рейтеры А0 (с ушком) и А имеют одинаковую массу, равную массе дистиллированной воды в сосуде 4, объем которой численно равен объему поплавка (температура 15 0 С). Если поплавок погрузить в воду с температурой 15 °С и одновременно на крючок 3 повесить рейтер А0, как показано на рис. 1. то равновесие весов не нарушится. Груз В в 10 раз, а груз С в 100 раз легче груза А (или А0). Испытуемую жидкость с температурой 15°С заливают в сосуд и погружают в нее поплавок 5. Если жидкость легче воды, то рейтер А0 не используется; рейтеры А, В и С располагают в вырезах коромысла так, чтобы весы пришли в равновесие. Относительная плотность жидкости ρ15 находится как сумма следующих произведений: номера выреза, в котором находится рейтер А, на коэффициент 0.1; номера выреза с рейтером В на коэффициент 0.01 и номера выреза с рейтером С на коэффициент 0.001. Если испытуемая жидкость тяжелее воды, то определение плотности ведется таким же образом, но на крючок 3 вешается рейтер А0 и перед запятой в значении ρ15 ставится цифра 1 вместо цифры 0.

Пикнометрический метод определения плотности является более точным, но и более трудоемким по сравнению с предыдущим методом. Он основан на сравнении масс образца и дистиллированной воды того же объема. Пикнометр представляет собой сосуд строго определенной вместимости, в который заливают испытуемую жидкость до обозначенной метки; в некоторых пикнометрах имеется особая пробка для удаления избытка жидкости. Емкость жидкости от 1 до 100 см 3 . При определении плотности твердого материала образцы должны иметь массу от 1 до 5 г. Производятся три взвешивания: испытуемого образца в воздухе М, пикнометра, наполненного жидкостью известной плотности М’, и пикнометра, наполненного той же жидкостью с погруженным в нее образцом М». Уровень жидкости и ее температура в обоих случаях должны быть строго одинаковыми. Погрешность при определении массы не должна превышать 0.2 мг. Искомая плотность при 20 °С:

Если пикнометр применяют для определения плотности жидкости, то путем взвешивания на точных аналитических весах находят: массу пустого пикнометра М1, массу пикнометра, залитого дистиллированной водой М2, массу пикнометра, залитого испытуемой жидкостью М3. Плотность жидкости при 20 0 С:

Если определение плотности производится при t ≠20 o C , то в приведенные выше формулы вместо ρ 20 H 20 подставляют ρ t H 20 — плотность воды при этой температуре (ρ 20 H 20 = 998.20 кг/м 3 ; ρ 23 H 20 = 997.55 кг/м 3 и ρ 27 H 20 =996.52 кг/м 3 ).

Источник

Разница между плотностью и весом

Разница между плотностью и весом — Наука

Содержание:

В ключевое отличие между плотностью и весом то, что Вес — это мера количества вещества в объекте, тогда как плотность измеряет количество вещества в единице объема..

Плотность и вес — физические свойства материи. Оба свойства связаны с массой. Более того, эти свойства очень полезны в физике и технике при описании объектов.

1. Обзор и основные отличия
2. Что такое плотность
3. Что такое вес
4. Параллельное сравнение — плотность и вес в табличной форме
5. Резюме

Что такое плотность?

Плотность — это физическое свойство вещества, которое является мерой количества вещества, доступного в единице объема. Он не меняется с размером выборки; поэтому мы называем это интенсивным свойством. Плотность — это отношение массы к объему, поэтому она имеет физические размеры ML-3. Единица измерения плотности часто — килограммы на кубический метр (кгм-3) или граммы на миллилитр (г / мл).

Когда твердый объект помещен в жидкость, он будет плавать, если твердое тело имеет меньшую плотность, чем жидкость. Это причина того, что лед плавает на воде. Если две жидкости (которые не смешиваются друг с другом) с разной плотностью соединяются вместе, жидкость с меньшей плотностью плавает на жидкости с более высокой плотностью.

В некоторых конкретных приложениях мы можем определить плотность как вес / объем. Мы называем это удельным весом, и в данном случае единицей измерения является ньютон на кубический метр.

Что такое вес?

Вес — это сила, приложенная к объекту из-за гравитационного поля. Он напрямую связан с массой, и мы можем представить его как произведение массы и гравитационного поля. Вес имеет те же размеры, что и сила (MLT-2), а единицы измерения — ньютон или килограмм веса (кгвт).

Поскольку вес связан с гравитационным полем, мы можем измерять разные веса в разных местах. Например, вес объекта на Луне составляет одну шестую от его веса на Земле. Кроме того, вес может отличаться в разных местах на земле из-за колебаний силы тяжести. Однако иногда мы рассматриваем вес как постоянное свойство.

Если место такое же, вес пропорционален массе, которая является мерой количества вещества, заключенного в объекте. Вес — это обширное физическое свойство, поскольку оно увеличивается с увеличением размера объекта.

В чем разница между плотностью и весом?

Плотность — это физическое свойство материи, которое является мерой количества вещества, доступного в единице объема, а вес — это сила, приложенная к объекту из-за гравитационного поля. Ключевое различие между плотностью и весом состоит в том, что вес является мерой количества вещества в объекте, тогда как плотность измеряет количество вещества в единице объема. Кроме того, плотность — это интенсивное физическое свойство, тогда как вес — экстенсивное свойство.

При рассмотрении единиц измерения вес измеряется в ньютонах, а плотность — в килограммах на кубический метр. Кроме того, вес напрямую связан с гравитацией, а плотность не имеет отношения к гравитационному полю.

Резюме — плотность против веса

Плотность — это физическое свойство материи, которое является мерой количества вещества, доступного в единице объема, а вес — это сила, приложенная к объекту из-за гравитационного поля. Ключевое различие между плотностью и весом состоит в том, что вес является мерой количества вещества в объекте, тогда как плотность измеряет количество вещества в единице объема.

Источник

Объемный вес и плотность

(Слайд1G3_3)

Объемным весом осадочной породы называется вес единицы ее объема (1 см3) вместе с порами, заполненными жидкой и газо-образной фазами.

Объемный вес породы зависит как от минералогического состава, так и от пористости породы, поэтому может служить характеристикой пористости для сцементированных пород в особенности, когда состав их известен. Объемный вес пород зависит также от степени влажности.

Наиболее точно объемный вес породы определяют путем гидростатического взвешивания ее образца. Расчет объемного веса породы производится по формуле:

где у— объемный вес породы;

Рс— вес сухого образца;

Ркв— вес образца, насыщенного керосином, в воздухе;

Рк— вес образца в керосине;

Ак—удельный вес керосина.

Объемный вес абсолютно сухой породы называют кажущимся, или объемным, весом скелета.

Объемный вес породы имеет ту же размерность и единицы измерения, что и удельный вес пород. Обычно он выражается в Г/см3.

Объемный вес породы в общем случае меньше ее удельного веса, но больше удельного веса жидкой и газообразной фаз, содержащихся в породах.

Объемный вес минералов вследствие незначительной пористости практически равен их удельному весу.

С глубиной залегания пород их объемный вес изменяется, обычно возрастает, что связано с уменьшением пористости пород. В особенности это относится к глинам и глинистым тонкозернистым песчаникам и алевролитам. Присутствие в породах цементов, характеризующихся высоким удельным весом, влияет на увеличение объемного веса.

Плотностью твердой (жидкой, газообразной) фазы называется отношение массы фазы к ее объему. Под плотностью породы подразумевают отношение массы породы с естественными влажностью и структурой к ее объему.

Объемной плотностью называют отношение массы сухой породы к ее объему.Плотность в системе СГС выражается в г/сма.Практически плотность пород соответствует объемному весу.

(Слайд1G3_4)

Между твердыми частицами, слагающими горные породы, в результате неполного прилегания их поверхностей друг к другу образуются промежутки различной величины — поры. Суммарный объем всех пор в единице объема, независимо от их величины и заполнения, называется пористостью породы.

Пористость породы определяется отношением норового пространства породы к ее общему объему и выражается обычно в процентах.

Пористое пространство пород определяется не только размерами и конфигурацией составляющих породу минеральных зерен, но и наличием в ней трещин, плоскостей напластования и присутствием в порах цементирующих веществ.

Пористость пород может обусловливаться как процессами седиментации, так и процессами химического растворения. В большинстве карбонатных коллекторов, к числу которых относятся известняки и доломиты, пористость является следствием растворения кальцита пластовыми водами, содержащими растворенную углекислоту. Поровые пространства таких пород представлены обычно каналами и кавернами. Осадочная (межгранулярная) пористость обусловливается наличием промежутков между отдельными зернами породы.

Величина пористости различных пород изменяется в широких пределах — от долей процента до нескольких десятков процентов. Например, пористость бакинских нефтяных песков колеблется от 18 до 52%, ставропольских газоносных алевритов и алевролитов — от 30 до 40%, волгоградских нефтяных яснополянских песчаников — от 20 до 27 %. Чаще всего пористость карбонатных пород колеблется в пределах 3—30%. Пористость глин может достигать 40—50% и выше.

Породы-коллекторы песчано-алевритового типа с пористостью меньше 5%, не содержащие трещин, разломов и каверн, обычно не представляют практического значения. А. И. Леворсен (1958) приводит такую приблизительную полевую оценку пористости пород:

Однако следует помнить, что не все гранулометрические типы песчано-алевритовых пород могут быть оценены по этой шкале.

(Слайд1G3_51)

В отличие от идеальной породы обломочные зерна, слагающие осадочные породы, обычно бывают разной формы. Даже хорошо окатанные обломочные зерна песчаников редко обладают правильной сферической формой. Пористость породы, состоящей из сферических зерен разной величины, может быть выше или ниже теоретической в зависимости от размеров составляющих зерен.

Теоретическая пористость агрегатов, составленных из сфер одинакового диаметра, может колебаться от 25,96% (рис. 1) до 47,6% (рис 2). Эти пределы хорошо совпадают с пределами пористости песков, пористость которых при их естественном залегании составляет 30—50%.

Слихтер (1899 г.) указывал, что значения теоретической пористости не зависят от величины зерен. Так, пористость гравия, состоящего исключительно из зерен правильной сферической формы диаметром 2 мм, имеет то же значение, что и у глины, сложенной тоже из зерен правильной сферической формы, но диаметром 0,05 мм. Однако в обоих случаях пористость неравноценна: гравий хороший коллектор, а глина для нефти и газа практически непроницаема.

И. М. Губкин (1932) указывал, что понятие «высокая пористость» обычно подразумевает обилие в породе различных отверстий, понятие же «низкая пористость» указывает не столько на отсутствие или незначительное количество пор, сколько на недостаток пор, могущих вмещать и отдавать нефть. Для накопления нефти или газа в породе или извлечения их из нее имеет значение не только относительное количество пор, но и их абсолютные размеры.

Зерна реального грунта по своей форме не являются сферическими. Наличие в породе глинистых, карбонатных и других цементирующих веществ, размеры зерен которых меньше преобладающей фракции песка, ведет к уменьшению пористости песчаной породы. Чем больше поверхность соприкосновения между зернами породы, тем меньше ее пористость.

Коэффициент однородности обломочных зерен различных песков нефтеносных районов СССР колеблется от 1 до 20. Чем больше коэффициент неоднородности, тем менее однороден песок, тем меньше коэффициент пористости.

(Слайд1G3_52)

Угловатые, неправильной формы зерна могут укладываться или более плотно, или более рыхло, чем сферические. В связи с этим они могут характеризоваться в том или ином случае как наименьшей, так и наибольшей пористостью по сравнению с идеально сферическими зернами. При наименьшей пористости зерна неправильной формы должны иметь одну и ту же угловатую форму и соответственно укладываться со смещением поверхностей, достигая наиболее плотной упаковки. В природных условиях довольно часто наблюдается сравнительно рыхлая укладка зерен, обладающих неправильной, угловатой формой, что отражается на величине пористости.

Поверхность соприкосновения зерен меняется в зависимости от горного давления, геометрического расположения зерен и их формы. Форма порового пространства пород более извилиста при менее окатанном и отсортированном обломочном материале.

Поры ячеистой и каналовидной формы встречаются у известняков.

Поры, близкие к ромбоидальным и тетраэдрическим, часто наблюдаются у пород с хорошо отсортированными и окатанными зернами.

Трещиновидные поры характерны для пород с жесткими связями, испытавших действие тектонических сил, процессов выветривания, кристаллизации и т. п.

Обычно с увеличением глубины залегания пласта пористость уменьшается. Особенно это относится к глинистым породам, тогда как песчаные отложения в случае давлений, не приводящих к скалыванию граней зерен породы (не более 300 кГ/см2), встречаются на относительно больших глубинах с достаточно высокой пористостью.

Общая пористость подразделяется на макропористость и микро-пористость. Под микропористостью понимаются поры размером менее 1 мм, под макропористостью поры более 1 мм.

Среди микропор выделяют поры ультракапиллярные (субкапиллярные) размером меньше 0,1 мк. Размеры капиллярных пор колеблются от 0,0002 до 0,1 мм. Жидкости в этих порах движутся по капиллярным законам, преодолевая силу тяжести. В субкапиллярных порах пере-движение воды под действием капиллярных сил затруднено или отсутствует, так как поры сечением менее 0,1 мк при смачивании полностью заполняются связанной водой (прочно связана со стенками пор).

Трещиновидные поры Е.М. Смеховым (Смехов и др., 1958) под-разделяются па микротрещины с раскрытостью от 0,01 до 0,1 мм и макротрещины с раскрытостью больше 0,1 мм; последние хорошо видимы невооруженным глазом. Мегапоры присущи карстовым полостям карбонатных пород.

Величина пор песчано-алевритовых пород сильно колеблется в зависимости от величины и формы зерен, плотности укладки и сцементированности обломочных зерен.

(Слайд1G3_53)

Пористая среда характеризуется рядом геометрических свойств:

— пористостью открытой (учитывающей объем только взаимосвязанного порового пространства),

— удельной внутренней поверхностью и извилистостью.

Изложение понятий о видах пористости приводится ниже.

Удельная внутренняя поверхность поровой системы определяется отношением внутренней поверхности твердой фазы породы к вмещающему объему и выражается в единицах, обратных длине.

Понятие извилистость ранее вводилось как кинематическая характеристика, равная относительной средней длине пути, пройденного жидкой частицей от одной стороны пористой среды к другой. Она выражается в безразмерных величинах.

Некоторые исследователи (Archie, 1942; Wyllie a. Spangler, 1952 и др.) считали возможным определять извилистость путем измерения электрического сопротивления, в силу того, что ток должен протекать по системе капилляров, составляющих поры. Исходя из этого, можно полагать, что извилистость должна быть такой же в случае движения частиц жидкости по системе тех же капилляров.

Кроме приведенных выше геометрических свойств, существует понятие о геометрической величине размеров пор любой пористой среды. Однако система пор пористых тел образует сложную поверхность, которую геометрически трудно представить.

В определении размера пор удобной мерой является их диаметр. Но представление о диаметре возможно в случае круглых пор, что бывает весьма редко. Помимо этого, поры вследствие того, что стенки их расходятся и сходятся, не обладают нормальным сечением. Тем не менее приближенно размер и распределение их определяют.

Виды пористости

(Слайд1G3_5)

Отношение объема пустот к общему объему породы называется пористостью. Однако в практике наибольший интерес представляет взаимосвязанное поровое пространство. В связи с этим различают пористость:

4 общую, или абсолютную (полную) — kп.абс[n, mабс, m, p]

4 открытую (взаимосвязанную) — kп.о[mo, mэ, kо]

Под общей пористостью понимают пористость, характеризуемую общим объемом всех пустот породы, включая поры, каверны, трещины, связанные и не связанные между собой.

Источник

Оцените статью
Юридический портал
Adblock
detector