Центр симметрии куба находится в точке в которой пересекаются

Конспект занятия на тему :»Симметрия в кубе»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Тема: Симметрия в кубе, в параллелепипеде, в призме и в пирамиде. Представление о правильных многогранниках.

Цель: проверить в ходе занятия усвоение знаний

Предметные:геометрическое тело и поверхность, многогранники: призма, пирамида, параллелепипед, правильные многогранники, площадь полной и боковой поверхности многогранников.

Метапредметные: развивать логическое мышление и пространственное воображение при построении геометрических тел и их элементов, умение анализировать, сравнивать, делать выводы относительно площади пространственных тел и их поверхностей.

Личностные: воспитывать познавательный интерес, внимательность при построении пространственных тел, культуру труда, дисциплинированность на занятие.

I. Проверка знаний студентов. Тест по теме «Многогранники и их основные свойства» (15 мин.)

II. Изучение нового материала.

Симметрия: определение и основные понятия.

Симметрия в параллелепипеде.

Представление о правильных многогранниках.

(1) Однажды Л.Н. Толстой сказал: «Стоя перед чёрной доской и рисуя на ней мелом разные фигуры, я вдруг был поражён мыслью: почему симметрия приятна глазу? Что такое симметрия? Это врождённое чувство. На чём же оно основано?».

? Как вы понимаете, что такое симметрия? Где мы можем встретиться с симметрией? Приведите примеры симметрии в природе, технике, архитектуре, быту.

Совершенно верно. С симметрией мы встречаемся в природе, архитектуре, технике, быту. Мы часто видим симметричные творения природы (листья, цветы, птицы, животные) или творения человека (здания, техника) — все то, что окружает нас каждый день. В быту: молотки, рубанки, лопаты, трубы. Мы смотрим на себя в зеркало и видим, что части нашего лица симметричны друг другу. По улицам ездят автомобили, автобусы, правая и левая части которых симметричны. Таким образом, симметрия бывает не только на плоскости (кленовый лист), но и в пространстве (лицо).

В школьном курсе геометрии вы изучали симметрию на плоскости. А сегодня на уроке мы рассмотрим с вами симметрию в пространстве. Ни одно геометрическое тело не обладают таким совершенством и красотой, как многогранник. «Многогранников вызывающе мало, — написал когда-то Л. Кэролл, — но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук».
« Симметрия » в переводе с греческого означает «соразмерность» (повторяемость). Симметричные тела и предметы состоят из равнозначных, правильно повторяющихся в пространстве частей. Особенно разнообразна симметрия кристаллов. Различные кристаллы отличаются большей или меньшей симметричностью. Она является их важнейшим и специфическим свойством, отражающим закономерность внутреннего строения.

Симметрияэто закономерная повторяемость элементов (или частей) фигуры или какого-либо тела, при которой фигура совмещается сама с собой при некоторых преобразованиях (вращение вокруг оси, отражение в плоскости).

Понятие симметрии включает в себя такие понятия, как: ось симметрии, центр симметрии и плоскость симметрии.

1) Ось симметрии — воображаемая ось, при повороте вокруг которой на некоторый угол, фигура совмещается сама с собой в пространстве (

2) Центр симметрии — это точка внутри многогранника, в которой пересекаются и делятся пополам прямые, соединяющие одинаковые элементы многогранника (грани, рёбра, углы) (С).

3) Плоскость симметрии делит многогранник на 2 зеркально равные части (Р).

4) Степенью симметрии называется совокупность всех элементов симметрии, которыми обладает данный многогранник. Например , куб обладает высокой степенью симметрии, т.к. в нём присутствуют 3 оси симметрии четвёртого порядка (3, четыре оси симметрии 3 — го порядка (4, шесть осей второго порядка (6 В точке пресечения осей симметрии располагается центр симметрии куба. Кроме того в кубе можно провести 9 плоскостей симметрии (9Р).

(2) Симметрия в кубе.

Кубу свойственны все виды симметрии.

а) Центр симметрии (центр куба) — точка пресечения диагоналей куба.

б) Плоскости симметрии (9): 1) 3 плоскости симметрии, проходящие через середины параллельных ребер; 2) 6 плоскостей симметрии, проходящие через противолежащие ребра.

в) Оси симметрии (13): 1) 3 оси, проходящие через центры противолежащих граней; 2) 4 оси симметрии, проходящие через противолежащие вершины; 3) 6 осей, проходящие через середины противолежащих рёбер.

(3) Симметрия в параллелепипеде.

а) Центр симметрии — точка пересечения диагоналей прямоугольного параллелепипеда.

б) Плоскость симметрии. 3 плоскости симметрии, проходящие через середины параллельных рёбер.

в) Оси симметрии. 3 оси симметрии, проходящие через точки пересечения диагоналей противолежащих граней

1) Симметрия прямой призмы. Одна плоскость симметрии, проходящая через середины боковых рёбер.

2) Симметрия правильной призмы.

а) Центр симметрии . При чётном числе сторон основания центр симметрии — это точка пересечения диагоналей правильной призмы.

б) Плоскости симметрии: 1) плоскость, проходящая через середины боковых рёбер; 2) при чётном числе сторон основания — плоскости, проходящие через противолежащие рёбра.

1) 2)

в) Ось симметрии : а) при чётном числе сторон основания — ось симметрии проходит через центры оснований; б) оси симметрии, проходящие через точки пресечения диагоналей противолежащих боковых граней.

а) Плоскости симметрии: при четном числе сторон основания — а) плоскости, проходящие через противолежащие боковые ребра, и б) плоскости, проходящие через медианы, проведенные к основанию противолежащих боковых граней.

б) Ось симметрии: пр и четном числе сторон основания — ось симметрии проходит через вершину правильной пирамиды и центр основания.

(6) Самостоятельная работа студентов по теме » Представление о правильных многогранниках». Задание: заполнить таблицу «Правильные многогранники».

Число граней, сходящихся в одной вершине

Источник

Центр симметрии куба находится в точке в которой пересекаются

Самый популярный многогранник из семейства Платоновых тел. Куб или гексаэдр (от греческого hex — шесть и hedra — грань) составлен из 6 квадратов.

Каждая из 8 вершин куба является вершиной 3 квадратов, поэтому сумма плоских углов при каждой вершине равна 270 ° . У куба 12 ребер, имеющих равную длину. Примем длину ребра куба за а и представим числовые характеристики его элементов.

Сумма длин всех ребер 12а
Площадь поверхности 6а 2
Объем V = а 3
Радиус описанной сферы
Радиус вписанной сферы r = a/2

Центром симметрии является точка пересечения диагоналей куба.

Через центр симметрии проходят 9 осей симметрии.

Ось симметрии куба может проходить либо через середины параллельных ребер, не принадлежащих одной грани, либо через точку пересечения диагоналей противоположных граней.

Плоскостей симметрии у куба также 9 и проходят они либо через противоположные ребра ( таковых плоскостей 6), либо через середины противоположных ребер (таких — 3).

В мире нет места для некрасивой математики.
Готфрид Харди

Правильные многогранники — самые выгодные фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников.

Куб передает форму кристаллов поваренной соли NaCl.

Форму куба имеют кристаллические решётки многих металлов (Li, Na, Cr, Pb, Al, Au, и другие), кристалл алмаза, кристаллическая решётка хлорида цезия CsCl.

В 2009 г. должно исполниться 500 лет со времени выхода в свет книги Луки Пачоли «Божественная пропорция», а следовательно, и изобретения Леонардо да Винчи для ее иллюстрации метода жестких ребер.

Леонардо изображал своим способом не только индивидуальные многогранники, но и, например, плотную упаковку кубов. Этим изображением Леонардо на три века предвосхитил гипотезу о периодическом строении кристаллов, высказанную французскими кристаллографами аббатом Рэнэ-Жюстом Гаюи (1743-1822) и морским офицером Огюстом Бравэ (1811-1863).

Можно сравнить этот рисунок Леонардо с похожей работой Маурица Эшера, относящейся к 1952 г., «Ячейки кубического пространства».

Не менее интересна другая работа Маурица Эшера. В центре гравюры «Водопад» расположен комплекс конструкций, поднимающийся на фоне ландшафта с террасами. Вертикальная ось создается двумя мощными башнями, каждая из которых увенчана острогранными многогранниками слева — три пересекающиеся куба, а справа также три пересекающихся правильных октаэдра. Маленькие домики примыкают к башням слева и справа в едином комплексе. Слева на первом плане картины изображен маленький садик со странными, необычными подводными растениями. Центральным действием картины является ручей, который падает на колесо и крутит его. Он течет слегка полого вниз и извивается, проходя через башни, при этом он трижды протекает через точку, в которой уже проходил. Абсурдность доходит до нас через круг неправильных соединений куба. В результате невольного восприятия зрительная точка оказывается самой ближней, а самая высокая точка становится самой низкой.

Водопад на картине Маурица Эшера осуществляет то,что мы считаем невозможным — вечное движение.

Источник

Центр симметрии куба находится в точке в которой пересекаются

Симметрии куба, как и симметрии тетраэдра делятся на два типа — самосовмещения, при которых точки куба не изменяют своего положения относительно друг друга, и преобразования, оставляющие куб в целом на месте, но передвигающие его точки относительно друг друга. Преобразования первого типа мы, как и в случае тетраэдра, будем называть вращениями. Все вращения, очевидно, образуют группу, которая называется группой вращений куба. Опишем сначала строение этой группы.

Имеется ровно 24 вращения куба вокруг различных осей симметрии.

В самом деле, при поворотах куба место нижней грани может занять любая из 6 граней куба (рис. 28). Для каждой из 6 возможностей — когда указано, какая именно грань расположена внизу, — имеется 4 различных расположения куба, соответствующих его поворотам вокруг оси, проходящей через центры верхней и нижней граней, на углы

Таким образом, получаем вращений куба. Укажем их в явном биде.

Куб имеет центр симметрии (точка пересечения его диагоналей), 3 оси симметрии четвертого порядка, 4 оси симметрии третьего порядка и 6 осей симметрии второго порядка. Достаточно рассмотреть вращения вокруг осей симметрии.

а) Оси симметрии четвертого порядка — это оси проходящие через центры противоположных граней: Вокруг каждой из этих осей имеется по три нетождественных вращения, а именно вращения на углы . Этим вращениям соответствуют 9 перестановок вершин куба, при которых вершины противоположных граней переставляются циклически и согласовано. Например, перестановки

отвечают поворотам вокруг оси .

б) Осями симметрии третьего порядка являются диагонали куба. Вокруг каждой из четырех диагоналей [1, 7], [2, 8], [3, 5], [4, 6] имеется по два нетождественных вращения на углы . Например, вращения вокруг диагонали [1, 7] определяют такие перестановки вершин куба:

Всего получаем 8 таких вращений.

в) Осями симметрии второго порядка будут прямые, соединяющие середины противолежащих ребер куба. Имеется шесть пар противоположных ребер (например, [1, 2], [7, 8]), каждая пара определяет одну ось симметрии, т. е. получаем 6 осей симметрии второго порядка. Вокруг каждой из этих осей имеется одно нетождественное вращение. Всего — 6 вращений. Вместе с тождественным преобразованием получаем 9 + 8 + 6 + 1 = 24 различных вращения. Итак, все вращения куба указаны. Вращения куба определяют перестановки на множествах его вершин, ребер, граней и диагоналей.

Рассмотрим, как действует группа вращений куба на множестве его диагоналей. Различные вращения куба переставляют диагонали куба по-разному, т. е. им соответствуют различные перестановки на множестве диагоналей (проверьте!). Поэтому группа вращений куба определяет группу перестановок на множестве диагоналей, состоящую из 24 перестановок. Поскольку куб имеет лишь 4 диагонали, группа всех таких перестановок совпадает с симметрической группой на множестве диагоналей. Итак, любая перестановка диагоналей куба соответствует некоторому его вращению, причемразным перестановкам соответствуют разные вращения.

Опишем теперь всю группу симметрий куба. Куб имеет три плоскости симметрии, проходящие через его центр. Симметрии относительно этих плоскостей в сочетании со всеми вращениями куба дают нам еще 24 преобразования, являющихся самосовмещениями куба. Поэтому полная группа симметрий куба состоит из 48 преобразований.

Источник

Оцените статью
Юридический портал
Adblock
detector