3 целых одна третья в кубе

Таблица кубов

Таблица кубов или таблица возведения чисел в третью степень. Интерактивная таблица кубов и изображения таблицы в высоком качестве.

0 1 2 3 4 5 6 7 8 9
0 0 1 8 27 64 125 216 343 512 729
1 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859
2 8000 9261 10648 12167 13824 15625 17576 19683 21952 24389
3 27000 29791 32768 35937 39304 42875 46656 50653 54872 59319
4 64000 68921 74088 79507 85184 91125 97336 103823 110592 117649
5 125000 132651 140608 148877 157464 166375 175616 185193 195112 205379
6 216000 226981 238328 250047 262144 274625 287496 300763 314432 328509
7 343000 357911 373248 389017 405224 421875 438976 456533 474552 493039
8 512000 531441 551368 571787 592704 614125 636056 658503 681472 704969
9 729000 753571 778688 804357 830584 857375 884736 912673 941192 970299

Таблица кубов

Теория

Куб числа – это результат умножения числа само на себя три раза. Операция вычисления куба числа – это частный случай возведения числа в степень, в данном случае в втретью:

Данное выражение читается: «возвести в куб число 6» или «6 в кубе».

Скачать таблицу кубов

  • Нажмите на картинку чтобы посмотреть в увеличенном виде.
  • Нажмите на надпись «скачать», чтобы сохранить картинку на свой компьютер. Изображение будет с высоким разрешением и в хорошем качестве.

Источник

Кубические уравнения

Кубическое уравнение – уравнение вида \[<\large>,\]

где \(a\ne 0,\ b,\ c,\ d\) – некоторые числа.

Кубическое уравнение всегда имеет как минимум один корень \(x_1\) .
Значит, всегда выполнено: \(ax^3+bx^2+cx+d=a(x-x_1)(x^2+mx+n)\) , где \(m, n\) – некоторые числа.

для любого числа \(a\) имеют единственный корень

Решением уравнения \(x^3=-8\) является \(x=\sqrt[3]<-8>=-2\) .

\(<\color>\) Кубические уравнения вида \(ax^3+bx^2+cx+d=0\) в некоторых случаях можно решить, разложив на множители левую часть.

Решить уравнение \(5x^3-x^2-20x+4=0\) .

Сгруппируем слагаемые в левой части и разложим ее на множители: \[(5x^3-20x)-(x^2-4)=0 \quad \Leftrightarrow \quad 5x(x^2-4)-(x^2-4)=0 \quad \Leftrightarrow \quad (x^2-4)(5x-1)=0\]

Тогда корнями данного уравнения являются \(x_1=-2, x_2=2, x_3=\frac15\) .

В некоторых задачах полезными могут оказаться формулы сокращенного умножения:

\[\begin &(x\pm y)^3=x^3\pm3x^2y+3xy^2\pm y^3\\ &x^3\pm y^3=(x\pm y)(x^2\mp xy+y^2) \end\]

\(<\color>\) Кубические уравнения вида \(ax^3+bx^2+cx+d=0\) , в которых не удается разложить левую часть на множители, можно решить другим способом: подобрать рациональный корень, если таковой имеется.

Для этого можно использовать следующие утверждения:

\(\blacktriangleright\) Если сумма \(a+b+c+d=0\) , то корнем уравнения является число \(1\) .

\(\blacktriangleright\) Если \(b+d=a+c\) , то корнем уравнения является число \(-1\) .

\(\blacktriangleright\) Пусть \(a,b,c,d\) – \(<\color<\text<целые>>>\) числа. Тогда если уравнение имеет рациональный корень \(\large<\dfrac

>\) , то для него будет выполнено:

\(d\) делится нацело на \(p\) ; \(a\) делится нацело на \(q\) .

1. У уравнения \(7x^3+3x^2-x-9=0\) сумма коэффициентов равна \(7+3-1-9=0\) , значит, \(x=1\) является корнем (не обязательно единственным) этого уравнения.

2. У уравнения \(4,5x^3-3x^2-0,5x+7=0\) выполнено: \(4,5-0,5=-3+7\) , значит, \(x=-1\) является корнем этого уравнения.

3. У уравнения \(2x^3+5x^2+3x-3=0\) коэффициенты — целые числа, поэтому можно подбирать корень: делители свободного члена \(-3\) : \(\pm 1, \pm 3\) ; делители старшего коэффициента \(2\) : \(\pm1, \pm2\) . Значит, возможные комбинации рациональных корней: \[\pm 1, \ \pm\dfrac12, \ \pm 3, \ \pm \dfrac32\]

Подставляя по очереди каждое число в уравнение, убеждаемся, что \(x=\frac12\) является корнем (т.к. после подстановки этого числа в уравнение оно превращается в верное равенство):

\[2\cdot \left(\frac12\right)^3+5\cdot \left(\frac12\right)^2+3\cdot \frac12-3=0 \quad \Leftrightarrow \quad 0=0\]

Заметим, что если у уравнения коэффициенты — рациональные числа, то домножением уравнения на их общих знаменатель можно получить равносильное ему уравнение с целыми коэффициентами. Например, уравнение \(\frac12x^3+\frac16x+2=0\) после умножения на \(6\) сводится к уравнению с целыми коэффициентами: \(3x^3+x+12=0\) .

Найдите корень уравнения \((2x + 1)^3 = 27\) . Если уравнение имеет более одного корня, в ответе запишите больший из них.

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Исходное уравнение \((2x + 1)^3 = 3^3\) стандартного вида, оно эквивалентно уравнению \(2x + 1 = 3\) , откуда заключаем, что \(x = 1\) – подходит по ОДЗ.

Найдите корень уравнения \((2x + 1)^3 = -27\) . Если уравнение имеет более одного корня, в ответе запишите больший из них.

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Исходное уравнение \((2x + 1)^3 = (-3)^3\) стандартного вида, оно эквивалентно уравнению \(2x + 1 = -3\) , откуда заключаем, что \(x = -2\) – подходит по ОДЗ.

Найдите корень уравнения \((3x + 2)^3 = -64\) . Если уравнение имеет более одного корня, в ответе запишите больший из них.

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Исходное уравнение \((3x + 2)^3 = (-4)^3\) стандартного вида, оно эквивалентно уравнению \(3x + 2 = -4\) , откуда заключаем, что \(x = -2\) – подходит по ОДЗ.

Найдите корень уравнения \((7x + 11)^3 = 64\) . Если уравнение имеет более одного корня, в ответе запишите больший из них.

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Исходное уравнение \((7x + 11)^3 = 4^3\) стандартного вида, оно эквивалентно уравнению \(7x + 11 = 4\) , откуда заключаем, что \(x = -1\) – подходит по ОДЗ.

Найдите корень уравнения \((-x — 11)^3 = 216\) . Если уравнение имеет более одного корня, в ответе запишите больший из них.

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Исходное уравнение \((-x — 11)^3 = 6^3\) стандартного вида, оно эквивалентно уравнению \(-x — 11 = 6\) , откуда заключаем, что \(x = -17\) – подходит по ОДЗ.

Решите уравнение \(8x^3-36x^2+54x-27=0\) .

Заметим, что левая часть представляет из себя куб разности: \[(2x)^3-3\cdot (2x)^2\cdot 3+3\cdot (2x)\cdot3^2-3^3=0\quad\Leftrightarrow\quad (2x-3)^3=0\quad\Leftrightarrow\quad x=\frac32.\]

Найдите больший корень уравнения \(8x^3+12x^2+6x+1=0\) .

Заметим, что левая часть представляет из себя куб суммы: \[(2x)^3+3\cdot (2x)^2\cdot 1+3\cdot (2x)\cdot1^2+1^3=0\quad\Leftrightarrow\quad (2x+1)^3=0\quad\Leftrightarrow\quad x=-\frac12.\]

В ЕГЭ кубические уравнения встречаются как в профильном, так и в базовом уровне. Это значит, что уметь верно решать подобные задания необходимо каждому школьнику. Некоторые могут сказать, что количество баллов в ЕГЭ за решение уравнений третьей степени невелико и тратить на них время нецелесообразно. С этим трудно согласиться. Во-первых, в ЕГЭ крайне важен каждый бал, во-вторых, уравнения третьей степени не так уж и сложны, если уделить им должное внимание в ходе подготовки. Для того чтобы учащийся мог оперативно и, главное, правильно выполнить подобные задания, стоит воспользоваться нашим образовательным ресурсом.

«Школково» — это уникальная платформа, которая позволяет выпускникам из Москвы и других регионов с любым уровнем математических знаний научиться решать кубические уравнения, а также другие виды, например, тригонометрические уравнения и эффективно подготовиться к сдаче ЕГЭ. Прежде всего мы рекомендуем вам начать с повторения или изучения теоретического материала по данной теме. «Школково» представляет вниманию учащихся из Москвы и других городов, которые готовятся к ЕГЭ, по сути, авторское пособие, в котором ясно и доступно изложен материал по теме «Кубические уравнения».

Помимо изложения основных определений и формул, вы сможете познакомиться с примерами по теме и изучить способы их решения. При этом стоит отметить, что наши специалисты подобрали весьма интересные варианты. Для того чтобы вы научились уверенно решать экзаменационные задачи, нужна тренировка. Поэтому рекомендуем вам затем перейти в раздел «Каталог» и приступить к самостоятельной работе с уравнениями третьей степени.

Источник

Оцените статью
Юридический портал
Adblock
detector