X в кубе уравнение касательной

Уравнение касательной к графику функции

Пусть дана функция f , которая в некоторой точке x 0 имеет конечную производную f ( x 0). Тогда прямая, проходящая через точку ( x 0; f ( x 0)), имеющая угловой коэффициент f ’( x 0), называется .

А что будет, если производная в точке x 0 не существует? Возможны два варианта:

  1. Касательная к графику тоже не существует. Классический пример — функция y = | x | в точке (0; 0).
  2. Касательная становится вертикальной. Это верно, к примеру, для функции y = arcsin x в точке (1; π /2).

Уравнение касательной

Всякая невертикальная прямая задается уравнением вида y = kx + b , где k — угловой коэффициент. Касательная — не исключение, и чтобы составить ее уравнение в некоторой точке x 0, достаточно знать значение функции и производной в этой точке.

Итак, пусть дана функция y = f ( x ), которая имеет производную y = f ’( x ) на отрезке [ a ; b ]. Тогда в любой точке x 0 ∈ ( a ; b ) к графику этой функции можно провести касательную, которая задается уравнением:

Здесь f ’( x 0) — значение производной в точке x 0, а f ( x 0) — значение самой функции.

Задача. Дана функция y = x 3 . Составить уравнение касательной к графику этой функции в точке x 0 = 2.

Уравнение касательной: y = f ’( x 0) · ( x − x 0) + f ( x 0). Точка x 0 = 2 нам дана, а вот значения f ( x 0) и f ’( x 0) придется вычислять.

Для начала найдем значение функции. Тут все легко: f ( x 0) = f (2) = 2 3 = 8;
Теперь найдем производную: f ’( x ) = ( x 3 )’ = 3 x 2 ;
Подставляем в производную x 0 = 2: f ’( x 0) = f ’(2) = 3 · 2 2 = 12;
Итого получаем: y = 12 · ( x − 2) + 8 = 12 x − 24 + 8 = 12 x − 16.
Это и есть уравнение касательной.

Задача. Составить уравнение касательной к графику функции f ( x ) = 2sin x + 5 в точке x 0 = π /2.

В этот раз не будем подробно расписывать каждое действие — укажем лишь ключевые шаги. Имеем:

f ( x 0) = f ( π /2) = 2sin ( π /2) + 5 = 2 + 5 = 7;
f ’( x ) = (2sin x + 5)’ = 2cos x ;
f ’( x 0) = f ’( π /2) = 2cos ( π /2) = 0;

В последнем случае прямая оказалась горизонтальной, т.к. ее угловой коэффициент k = 0. Ничего страшного в этом нет — просто мы наткнулись на точку экстремума.

Источник

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Задача на нахождение уравнения прямой касательной к графику функции в заданной точке.
Описание.

Знак умножения нужно вводить только между числами, во всех остальных случаях его можно не вводить.

Функция Описание Пример ввода Результат ввода
pi Число \(\pi\) pi $$ \pi $$
e Число \(e\) e $$ e $$
e^x Степень числа \(e\) e^(2x) $$ e^ <2x>$$
exp(x) Степень числа \(e\) exp(1/3) $$ \sqrt[3] $$
|x|
abs(x)
Модуль (абсолютное значение) числа \(x\) |x-1|
abs(cos(x))
\( |x-1| \)
\( |\cos(x)| \)
sin(x) Синус sin(x-1) $$ sin(x-1) $$
cos(x) Косинус 1/(cos(x))^2 $$ \frac<1> $$
tg(x) Тангенс x*tg(x) $$ x \cdot tg(x) $$
ctg(x) Котангенс 3ctg(1/x) $$ 3 ctg \left( \frac<1> \right) $$
arcsin(x) Арксинус arcsin(x) $$ arcsin(x) $$
arccos(x) Арккосинус arccos(x) $$ arccos(x) $$
arctg(x) Арктангенс arctg(x) $$ arctg(x) $$
arcctg(x) Арккотангенс arcctg(x) $$ arcctg(x) $$
sqrt(x) Квадратный корень sqrt(1/x) $$ \sqrt<\frac<1>> $$
root(n,x) Корень степени n
root(2,x) эквивалентно sqrt(x)
root(4,exp(x)) $$ \sqrt[4] < e^> $$
x^(1/n) Корень степени n
x^(1/2) эквивалентно sqrt(x)
(cos(x))^(1/3) $$ \sqrt[\Large 3 \normalsize] $$
ln(x)
log(x)
log(e,x)
Натуральный логарифм
(основание — число e )
1/ln(3-x) $$ \frac<1> $$
log(10,x) Десятичный логарифм числа x log(10,x^2+x) $$ log_<10>(x^2+x) $$
log(a,x) Логарифм x по основанию a log(3,cos(x)) $$ log_3(cos(x)) $$
sh(x) Гиперболический синус sh(x-1) $$ sh(x-1) $$
ch(x) Гиперболический косинус ch(x) $$ ch(x) $$
th(x) Гиперболический тангенс th(x) $$ th(x) $$
cth(x) Гиперболический котангенс cth(x) $$ cth(x) $$

Почему решение на английском языке?

При решении этой задачи используется большой и дорогой модуль одного «забугорного» сервиса. Решение он выдает в виде изображения и только на английском языке. Изменить это, к сожалению, нельзя. Ничего лучше мы найти не смогли. Зато он выводит подробное и очень качественное решение в том виде в котором оно принято в высших учебных заведениях. Единственное неудобство — на английском языке, но это не большая цена за качество.

Некоторые пояснения по выводу решения.

Вывод Перевод, пояснение
Find the tangent line equation Найти уравнение касательной
Compute the derivative of y(x), which will be used to find the slope of the tangent line Вычислим производную y(x), которая будет использоваться для нахождения наклона касательной
Compute the slope of the tangent line by substituting x0 into y'(x) Вычислим наклон касательной, подставив x0 в y'(x)
Evaluate y(x0) in order to find the y-value at the point of tangency Вычислим y(x0), чтобы найти значение y в точке касания
Answer Ответ
\(log(x)\) Натуральный логарифм, основание — число e. У нас пишут \(ln(x)\)
\(arccos(x)\) или \(cos^<-1>(x)\) Арккосинус. У нас пишут \( arccos(x) \)
\(arcsin(x)\) или \(sin^<-1>(x)\) Арксинус. У нас пишут \( arcsin(x) \)
\(tan(x)\) Тангенс. У нас пишут \(tg(x) = \frac\)
\(arctan(x)\) или \(tan^<-1>(x)\) Арктангенс. У нас пишут \(arctg(x)\)
\(cot(x)\) Котангенс. У нас пишут \(ctg(x) = \frac\)
\(arccot(x)\) или \(cot^<-1>(x)\) Арккотангенс. У нас пишут \(arcctg(x)\)
\(sec(x)\) Секанс. У нас пишут также \(sec(x) = \frac<1>\)
\(csc(x)\) Косеканс. У нас пишут \(cosec(x) = \frac<1>\)
\(cosh(x)\) Гиперболический косинус. У нас пишут \(ch(x) = \frac> <2>\)
\(sinh(x)\) Гиперболический синус. У нас пишут \(sh(x) = \frac> <2>\)
\(tanh(x)\) Гиперболический тангенс. У нас пишут \(th(x) = \frac>> \)
\(coth(x)\) Гиперболический котангенс. У нас пишут \(cth(x) = \frac<1> \)

Если вам что-то осталось не понятно обязательно напишите об этом в Обратной связи и мы дополним эту таблицу.

Источник

10.3.1. Уравнение касательной

Выведем уравнение касательной к графику функции y=f (x) в точке с абсциссой х0. Для наглядности используем график из предыдущего урока 10.3. («Определение производной. Геометрический смысл производной») и выведем уравнение касательной МТ.

Так как точку М мы взяли произвольно, то должны получить уравнение касательной, которое будет справедливо для любой функции y=f (x), имеющей касательную в определенной точке с абсциссой х0.

Итак, любую прямую можно записать в виде y=kx+b, где k — угловой коэффициент прямой. Мы теперь знаем, что в качестве углового коэффициента можно взять f ‘(х0) — значение производной функции y=f (x) в точке с абсциссой х0. Эта точка является общей точкой для функции и для касательной МТ.

Таким образом, касательная МТ имеет вид: y=f ‘(х0)·x+b. Осталось определить значение b. Это мы сделаем просто: подставим координаты точки М в последнее равенство, т.е. вместо х запишем х0, а вместо у подставим f (х0). Получаем равенство:

f (х0) =f ‘(х0)·х0+b.

Отсюда b=f (х0)f ‘(х0)·х0. Подставляем это значение b в равенство: y=f ‘(х0)·x+b. Тогда:

y =f ‘(х0)·х+f (х0)f ‘(х0)·х0. Упростим.

y=f (х0)+(f ‘(х0)·х f ‘(х0)·х0) или

y=f (х0)+f ‘(х0)(х х0). Это и есть искомое уравнение касательной МТ.

Выполнить следующие задания.

1. Написать уравнение касательной к графику функции y=x 2 в точке x0=3. Сделать чертеж.

Запишем уравнение касательной к графику функции y=f (x) в точке с абсциссой x0 в общем виде:

Находим значение данной функции в точке с данной абсциссой:

f (x0)=f (3)=3 2 = 9 .

Находим производную f ‘(x)=(x 2 )’=2x и находим значение этой производной при х=3.

Тогда f ‘(x0)=f ‘(3)=2·3= 6 .

Подставим найденные значения

f (x0)= 9 и f ‘(x0)= 6 в уравнение касательной, получим:

y= 9 + 6 ·(x-3);

y= 6 x-9 — искомое уравнение касательной.

Ответ: y= 6 x-9.

2. Написать уравнение касательной к графику функции

Записываем общее уравнение касательной: y=f (x0) +f ‘(x0)(x-x0). Находим значение данной функции в точке х=1, получаем:

f (x0)=f (1) = 1 . Найдем производную данной функции по формуле производной степени:

f ‘(x)=(x -2 )=-2x -2-1 =-2x -3 .

Находим значение этой производной при х=1.

f ‘(x0)=f (1)=-2·(1) -3 = -2 . Подставляем найденные значения в общее уравнение касательной:

y= 12 (x-1);

y= -2 x+3 — искомое уравнение касательной.

Ответ: y=- 2 x+3.

Источник

Уравнение касательной к графику функции (ЕГЭ 2022)

Чтобы разобраться с этой темой, нужно знать что такое производная.

Сейчас проверим, знаешь ли ты ее… 🙂

Найди приращение функции \( y=<^<2>>+2x+3\) при приращении аргумента, равном \( \Delta x\).

Должно получиться \( \Delta y=\Delta x\left( \Delta x+2x+2 \right)\).

А теперь найди производную функции \( y\left( x \right)=3<<\sin >^<2>>\sqrt\) в точке \( <_<0>>=\frac<<\pi >^<2>><16>\).

Если в каком-нибудь из этих примеров возникли сложности, настоятельно рекомендую вернуться к теме «Производная» и проштудировать ее еще раз.

Знаю, тема очень большая, но иначе нет смысла идти дальше…

А если ты справился, то в путь!

Уравнение касательной к графику функции — коротко о главном

Геометрический смысл производной

Производная функции в конкретной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или угловому коэффициенту этой касательной:

Уравнение касательной

Уравнение касательной к графику функции \( f\left( x \right)\) в точке \( <_<0>>\):

Алгоритм действий для нахождения уравнения касательной

Алгоритм Пример: \( f\left( x \right)=<^<2>>-2x+3\), \( <_<0>>=3\)
1. Вычислим \( f\left( <_<0>> \right)\) \( f\left( <_<0>> \right)=f\left( 3 \right)=<<3>^<2>>-2\cdot 3+3=6\)
2. Найдем формулу производной функции \( ’\left( x \right)\) \( ’\left( x \right)=<<\left( <^<2>>-2x+3 \right)>^<\prime >>=2 -2\)
3. Вычислим \( ’\left( <_<0>> \right)\) \( ’\left( <_<0>> \right)=’\left( 3 \right)=2\cdot 3-2=4\)
4. Подставим \( <_<0>>,\text< >f\left( <_<0>> \right)\) и \( ’\left( <_<0>> \right)\) в формулу уравнения касательной \( y=’\left( <_<0>> \right)\cdot \left( x-<_<0>> \right)+f\left( <_<0>> \right)\) \( \beginy=’\left( <_<0>> \right)\cdot \left( x-<_<0>> \right)+f\left( <_<0>> \right)=\\\text< >=4\left( x-3 \right)+6=4 -12+6=\\\text< >=4 -6\end\)

Геометрический смысл производной

Если плохо разбираешься в производной, то вот тебе полноценный гид по ней, с текстом, примерами и вебинарами: «Производная функции – геометрический смысл и правила дифференцирования»!

Рассмотрим график какой-то функции \( y=f\left( x \right)\):

Выберем на линии графика некую точку \( A\). Пусть ее абсцисса \( <_<0>>\), тогда ордината равна \( f\left( <_<0>> \right)\).

Затем выберем близкую к точке \( A\) точку \( B\) с абсциссой \( <_<0>>+\Delta x\); ее ордината – это \( f\left( <_<0>>+\Delta x \right)\):

Проведем прямую через эти точки. Она называется секущей (прямо как в геометрии).

Обозначим угол наклона прямой к оси \( Ox\) как \( \alpha \).

Как и в тригонометрии, этот угол отсчитывается от положительного направления оси абсцисс против часовой стрелки.

Какие значения может принимать угол \( \alpha \)?

Как ни наклоняй эту прямую, все равно одна половина будет торчать вверх. Поэтому максимально возможный угол – \( 180<>^\circ \), а минимально возможный – \( 0<>^\circ \).

Значит, \( \alpha \in \left[ 0<>^\circ ;180<>^\circ \right)\). Угол \( 180<>^\circ \) не включается, поскольку положение прямой в этом случае в точности совпадает с \( 0<>^\circ \), а логичнее выбирать меньший угол.

Возьмем на рисунке такую точку \( C\), чтобы прямая \( AC\) была параллельна оси абсцисс, а \( BC\) – ординат:

По рисунку видно, что \( AC=\Delta x\), а \( BC=\Delta f\).

Тогда отношение приращений:

(так как \( \angle C=90<>^\circ \), то \( \triangle ABC\) – прямоугольный).

Давай теперь уменьшать \( \Delta x\).

Тогда точка \( B\) будет приближаться к точке \( A\). Когда \( \Delta x\) станет бесконечно малым \( \left( \Delta x\to 0 \right)\), отношение \( \frac<\Delta f><\Delta x>\) станет равно производной функции в точке \( <_<0>>\).

Что же при этом станет с секущей?

Точка \( B\) будет бесконечно близка к точке \( A\), так что их можно будет считать одной и той же точкой.

Но прямая, имеющая с кривой только одну общую точку – это ни что иное, как касательная (в данном случае это условие выполняется только на небольшом участке – вблизи точки \( A\), но этого достаточно).

Говорят, что при этом секущая занимает предельное положение.

Угол наклона секущей к оси \( \displaystyle Ox\) назовем \( \varphi \). Тогда получится, что производная

Производная равна тангенсу угла наклона касательной к графику функции в данной точке

Поскольку касательная – это прямая, давай теперь вспомним уравнение прямой:

За что отвечает коэффициент \( \displaystyle k\)? За наклон прямой. Он так и называется: угловой коэффициент.

Что это значит? А то, что равен он тангенсу угла между прямой и осью \( \displaystyle Ox\)!

То есть вот что получается:

Но мы получили это правило, рассматривая возрастающую функцию. А что изменится, если функция будет убывающей?

Посмотрим: Теперь углы \( \alpha \) и \( \displaystyle \varphi \) тупые. А приращение функции \( \Delta f\) – отрицательное.

Снова рассмотрим \( \triangle ABC\): \( \angle B=180<>^\circ -\alpha \text< >\Rightarrow \text< >\ \angle B=-\ \alpha \).

Получаем: \( \frac<-\Delta f><\Delta x>=-\ \alpha \text< >\Rightarrow \text< >\frac<\Delta f><\Delta x>=\ \alpha \), то есть все, как и в прошлый раз.

Снова устремим точку \( \displaystyle B\) к точке \( \displaystyle A\), и секущая \( \displaystyle AB\) примет предельное положение, то есть превратится в касательную к графику функции в точке \( \displaystyle A\).

Итак, сформулируем окончательно полученное правило:

Производная функции в данной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или (что то же самое) угловому коэффициенту этой касательной:

Это и есть геометрический смысл производной.

Окей, все это интересно, но зачем оно нам? Вот пример:

На рисунке изображен график функции \( \displaystyle y=\mathsf\left( x \right)\) и касательная к нему в точке с абсциссой \( <_<0>>\).

Найдите значение производной функции \( \displaystyle \mathsf\left( x \right)\) в точке \( <_<0>>\).

Как мы недавно выяснили, значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс:

\( \displaystyle f’\left( x \right)=k=\ \varphi\).

Значит, для нахождения значения производной нам нужно найти тангенс угла наклона касательной.

На рисунке у нас отмечено две точки, лежащие на касательной, координаты которых нам известны. Так давай достроим прямоугольный треугольник, проходящий через эти точки, и найдем тангенс угла наклона касательной!

Угол наклона касательной к оси \( \displaystyle Ox\) – это \( \displaystyle \angle BAC\). Найдем тангенс этого угла:

Таким образом, производная функции \( \displaystyle \mathsf\left( x \right)\) в точке \( <_<0>>\) равна \( \displaystyle 1,2\).

Ответ: \( \displaystyle 1,2\).

Еще статью на геометрический смысл производной ты найдешь здесь: «Геометрический смысл производной«.

Решим два примера

Пример 1. На рисунке изображен график функции \( \displaystyle y=\mathsf\left( x \right)\) и касательная к нему в точке с абсциссой \( <_<0>>\). Найдите значение производной функции \( \displaystyle \mathsf\left( x \right)\) в точке \( <_<0>>\);

Пример 2. На рисунке изображен график функции \( \displaystyle y=\mathsf\left( x \right)\) и касательная к нему в точке с абсциссой \( <_<0>>\). Найдите значение производной функции \( \displaystyle \mathsf\left( x \right)\) в точке \( <_<0>>\).

Решение примера №1

Значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс:

\( \displaystyle k=f’\left( x \right)=\ \beta\).

Достроим треугольник со стороной \( \displaystyle AC\), лежащей на касательной.

Угол наклона касательной – это угол, отмеченный зеленым на графике.

Он тупой \( \left( >90<>^\circ \right)\), поэтому его тангенс не получится вычислить так же, как в предыдущем примере (ведь в прямоугольном треугольнике не может быть тупого угла).

Применим знания из тригонометрии:

Источник

Оцените статью
Юридический портал
Adblock
detector