Стык двух граней куба

Стык граней куба

Ответ на вопрос «Стык граней куба «, 5 (пять) букв:
ребро

Альтернативные вопросы в кроссвордах для слова ребро

Определение слова ребро в словарях

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова. Значение слова в словаре Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.
-а, мн. ребра, ребер, ребрам, ср. Одна из нескольких парных дугообразных плоских костей, идущих от позвоночника к грудной кости и составляющих грудную клетку. Грудинные ребра. Шейное р. Поясничное р. Одни ребра остались у кого-н. (перен.: очень исхудал; .

Примеры употребления слова ребро в литературе.

Ослабленный диетой, состоявшей из дождевой воды, лепестков нарцисса, жуков, арахиса, которым кормили белку, и черствого хлеба, который бросали синицам, скрывавшийся в яме художник-концептуалист не мог дать достойный отпор разъяренному Питу, который — так и не проникшись серьезностью изобразительной миссии, исполняемой концептуалистом, — сломал ему три ребра, что, по иронии судьбы и по общему мнению, явилось наивысшим концептуальным штрихом всего садово-художественного проекта и способствовало тому, что оный проект стал достоянием широкой общественности посредством последующего судебного разбирательства.

Действие неволи при съемках барок заключается в том, что при ее помощи производят искусственную запруду: струя бьет в неволю, поставленную в воде ребром, и таким образом помогают барке сняться с мели.

Подойдя к правому краю дороги, он обнаружил бордюрный камень высотой ему по ребра, заглянул за него и ничего не увидел.

Чтобы произвести запруду, оставалось только повернуть неволю на ребро и удержать ее в этом направлении все время, пока барку с другой стороны, под кормовым плечом, бурлаки будут сталкивать чегенями.

И ладно, большинство игарских граждан обуты оказались в оленьи бакари и валенки, а то бы мне все ребра переломали.

Источник: библиотека Максима Мошкова

Источник

Стык двух граней куба

ПРЯМАЯ ПРИЗМА. ПОВЕРХНОСТЬ И ОБЪЁМ ПРЯМОЙ ПРИЗМЫ.

На чертеже 286 изображена выкройка, или, как её принято называть, развёртка геометрического тела. Она состоит из шести равных квадратов. Если эту развёртку согнуть надлежащим образом по указанным на чертеже пунктирным линиям, то мы получим геометрическое тело, называемое кубом.

Под номером 287 дан чертёж куба, а под номером 288 дан рисунок куба. Куб ограничен шестью равными квадратами, которые называются его гранями.

На рисунке видны только три его грани, а на чертеже можно видеть все шесть граней. Любые две противоположные грани куба называются его основаниями, тогда остальные четыре его грани называются боковыми гранями; отрезки, которые получаются при пересечении граней куба, называются его рёбрами. У куба 12 рёбер. Все они равны между собой.При пересечении трёх граней куба образуются точки, которые называются его в е р ш и н а м и. У куба 8 вершин.

2. Взаимное положение рёбер и граней куба.

Противоположные грани куба параллельны. Плоскости, в которых лежат эти грани, не пересекаются, т. е. не имеют общих точек. Параллельные плоскости мы наблюдаем на многих окружающих нас предметах; например, плоскости пола и потолка в комнате параллельны.
В кубе можно наблюдать и пересекающиеся плоскости. Пересекаясь, плоскости образуют двугранные углы. Модель двугранных углов можно получить, сгибая лист картона или бумаги по прямой линии.

Двугранные углы можно получить острые, прямые и тупые. Грани куба пересекаются под прямым углом. Под прямым углом пересекаются также стены в комнате, стены и потолок, стены и пол. Плоскости, пересекающиеся под прямым углом, называются перпендикулярными. Перпендикулярность плоскостей проверяется с помощью угольника. На чертеже 289 плоскости при пересечении образуют прямой угол. На чертеже 290 и на чертеже 291 показаны плоскости, которые при пересечении не образуют прямого угла; в первом случае они пересекаются под острым углом, во втором случае — под тупым.

Рёбра куба, находящиеся на одной грани (черт. 287), или пересекаются под прямым углом (ЕА _|_ АВ, КС _|_ ВС и т. д.), или параллельны (ЕF || АВ, ВС || КF и т. д.).

Рёбра куба, например КС и АВ (черт. 287), не параллельны, но и не пересекутся, сколько бы их ни продолжать. Прямые, которые не параллельны и не пересекаются, называются скрещивающимися. Легко получить модели скрещивающихся прямых. Например, две иглы, из которых одна положена на стол, а другая воткнута в стол так, что не пересекает первую, представляют собой модель двух скрещивающихся прямых (черт. 292). Эти две прямые не пересекаются и не параллельны; легко убедиться, что через них нельзя провести плоскость.

Точно так же, если взять две дощечки, поместить их параллельно друг другу и затем на одну из них положить палочку в направлении, например, с юга на север, а на другую — в направлении с запада на восток, то эти две палочки образуют модель скрещивающихся прямых (черт. 293).

Эти две прямые тоже не пересекаются, не параллельны, и через них также нельзя провести плоскость.

Найдите модели скрещивающихся прямых на окружающих предметах, например, в классной комнате.

4. Прямая, перпендикулярная к плоскости.

Рассматривая куб (черт. 287), заметим, что ребро FВ образует прямые углы с рёбрами ВС и АВ, лежащими на нижнем основании куба. Это же ребро FВ образует прямые углы с любой прямой, проведённой в плоскости основания куба через точку В. Ребро FВ является перпендикуляром к плоскости основания куба.

Перпендикуляром к плоскости называется прямая, которая пересекает плоскость в какой-нибудь точке и перпендикулярна к любой прямой, проведённой в этой плоскости через ту же точку.

Чтобы провести перпендикуляр к плоскости, берут два чертёжных треугольника и ставят их так, чтобы два катета лежали на плоскости, как показано на чертеже 294, а другую пару катетов совмещают. Эти два катета и образуют перпендикуляр к данной плоскости.

На чертеже 294 прямая АВ перпендикулярна к плоскости Р.

Перпендикулярность прямой АВ к плоскости Р легко проверить: для этого надо взять ещё один чертёжный треугольник и несколько раз в различных положениях приложить его к двум первым треугольникам так, чтобы его катет всякий раз совмещался с катетом АВ. Тогда другой катет третьего треугольника всё время будет находиться в плоскости Р. Значит, можно считать проверенным, что прямая АВ образует прямые углы с любой прямой, проведённой на плоскости через её основание, т. е. является перпендикуляром к плоскости.

Таким образом, мы приходим к выводу: если прямая, пересекающая плоскость в какой-нибудь точке О, перпендикулярна к двум прямым, проведённым на плоскости через точку О, то эта прямая перпендикулярна к плоскости.

Этот вывод является признаком перпендикулярности прямой к плоскости.

Через любую произвольно взятую точку можно провести перпендикуляр к данной плоскости, но только один.

Длина перпендикуляра, опущенного из какой-нибудь точки на плоскость, называется расстоянием от этой точки до плоскости.

5. Площадь поверхности куба.

Чтобы вычислить площадь поверхности куба, достаточно вычислить площадь одной его грани и полученное число помножить на 6. Если ребро куба обозначить через а, то площадь поверхности одной его грани будет равна а 2 , а площадь всей поверхности куба (полная поверхность) составит 6а 2 .

S = 6а 2 , где S — площадь полной поверхности куба.

Площадь поверхности его оснований составит 2а 2 . Площадь поверхности боковых его граней составит 4а 2 .

1. Ребро куба равно 8 см (10 см, 12 см, 20 см). Вычислить площадь всей его поверхности; площадь оснований; площадь его боковой поверхности.

2. Площадь полной поверхности куба равна 150 кв. см (600 кв. см, 216 кв. см, 864 кв. см). Вычислить длину его ребра.

3. Площадь боковой поверхности куба равна 100 кв. см (64 кв. см, 324 кв. см, 576 кв. см). Вычислить площадь его полной поверхности.

4. Сделать из плотной бумаги модель куба, ребро которого равно 8 см.

Указание. Для того чтобы полученное геометрическое тело сохраняло свою форму, у развёртки куба необходимо сделать небольшие закраины (черт. 295). Если их подклеить, они составят каркас, который придаст необходимую жёсткость модели.

5. Сколько потребуется белил для окраски с обеих сторон бака (без крышки), имеющего форму куба с ребром в 80 см, если на окраску 1 кв.м требуется белил 0,25 кг?

Источник

Гиперкуб

В геометрии гиперкуб — это n-мерная аналогия квадрата (n = 2) и куба (n = 3). Это замкнутая выпуклая фигура, состоящая из групп параллельных линий, расположенных на противоположных краях фигуры, и соединенных друг с другом под прямым углом.

Эта фигура также известная под названием тессеракт (tesseract). Тессеракт относится к кубу, как куб относится к квадрату. Более формально, тессеракт может быть описан как правильный выпуклый четырехмерный политоп (многогранник), чья граница состоит из восьми кубических ячеек.

Согласно Окфордскому словарю английского языка, слово «tesseract» было придумано в 1888 Чарльзом Говардом Хинтоном (Charles Howard Hinton) и использовано в его книге «Новая эра мысли» («A New Era of Thought»). Слово было образовано от греческого «τεσσερες ακτινες» («четыре луча»), имеется в виде четыре оси координат. Кроме этого, в некоторых источниках, эту же фигуру называли тетракубом (tetracube).

n-мерный гиперкуб также называется n-кубом.


Проекция гиперкуба на плоскость

Точка — это гиперкуб размерности 0. Если сдвинуть точку на единицу длины, получится отрезок единичной длины — гиперкуб размерности 1. Далее, если сдвинуть отрезок на единицу длины в направлении перпендикулярном направлению отрезка получится куб — гиперкуб размерности 2. Сдвигая квадрат на единицу длины в направлении перпендикулярном плоскости квадрата, получается куб — гиперкуб размерности 3. Этот процесс может быть обобщен на любое количество измерений. Например, если сдвинуть куб на единицу длины в четвертом измерении, получится тессеракт.

Семейство гиперкубов является одним из немногих правильных многогранников, которые могут быть представлены в любом измерении.

Элементы гиперкуба

Гиперкуб размерности n имеет 2n «сторон» (одномерная линия имеет 2 точки; двухмерный квадрат — 4 стороны; трехмерный куб — 6 граней; четырехмерный тессеракт — 8 ячеек). Количество вершин (точек) гиперкуба равно 2 n (например, для куба — 2 3 вершин).

Количество m-мерных гиперкубов на границе n-куба равно

Например, на границе гиперкуба находятся 8 кубов, 24 квадрата, 32 ребра и 16 вершин.

Элементы гиперкубов

n-куб Название Вершина
(0-грань)
Ребро
(1-грань)
Грань
(2-грань)
Ячейка
(3-грань)
(4-грань) (5-грань) (6-грань) (7-грань) (8-грань)
0-куб Точка 1
1-куб Отрезок 2 1
2-куб Квадрат 4 4 1
3-куб Куб 8 12 6 1
4-куб Тессеракт 16 32 24 8 1
5-куб Пентеракт 32 80 80 40 10 1
6-куб Хексеракт 64 192 240 160 60 12 1
7-куб Хептеракт 128 448 672 560 280 84 14 1
8-куб Октеракт 256 1024 1792 1792 1120 448 112 16 1
9-куб Эненеракт 512 2304 4608 5376 4032 2016 672 144 18

Проекция на плоскость

Формирование гиперкуба может быть представлено следующим способом:

  • Две точки A и B могут быть соединены, образуя отрезок AB.
  • Два параллельных отрезка AB и CD могут быть соединены, образуя квадрат ABCD.
  • Два параллельных квадрата ABCD и EFGH могут быть соединены, образуя куб ABCDEFGH.
  • Два параллельных куба ABCDEFGH и IJKLMNOP могут быть соединены, образуя гиперкуб ABCDEFGHIJKLMNOP.

Последнюю структуру нелегко представить, но возможно изобразить ее проекцию на двухмерное или трехмерное пространство. Более того, проекции на двухмерную плоскость могут быть более полезны возможностью перестановки позиций спроецированных вершин. В этом случае можно получить изображения, которые больше не отражают пространственные отношения элементов внутри тессеракта, но иллюстрируют структуру соединений вершин, как на примерах ниже.

На первой иллюстрации показано, как в принципе образуется тессеракт путем соединения двух кубов. Эта схема похожа на схему создания куба из двух квадратов. На второй схеме показано, что все ребра тессеракта имеют одинаковую длину. Эта схема также заставляют искать соединенные друг с другом кубы. На третьей схеме вершины тессеракта расположены в соответствии с расстояниями вдоль граней относительно нижней точки. Эта схема интересна тем, что она используется как базовая схема для сетевой топологии соединения процессоров при организации параллельных вычислений: расстояние между любыми двумя узлами не превышает 4 длин ребер, и существует много различных путей для уравновешивания нагрузки.


Развертка тессеракта

Развертка гиперкуба

Тессеракт может быть развернут в восемь кубов, подобно тому как куб может быть развернут в шесть квадратов. Многогранник-равертка гиперкуба называется сетью. Существует 261 различных вариантов сетей. Справа показан один из вариантов


Сальвадор Дали
«Распятие» (1954)

Гиперкуб в искусстве

Гиперкуб появился в научно-фантастической литературе с 1940 года, когда Роберт Хайнлайн в рассказе «Дом, который построил Тил» («And He Built a Crooked House») описал дом, построенный по форме развертки тессеракта. В рассказе этот Далее этот дом сворачивается, превращаясь в четырехмерный тессеракт. После этого гиперкуб появляется во многих книгах и новеллах.

В фильме «Куб 2: Гиперкуб» рассказывается о восьми людях, запертых в сети гиперкубов.

На картине Сальвадора Дали «Распятие» («Crucifixion (Corpus Hypercubus)», 1954) изображен Иисус распятый на развертке тессеракта. Эту картину можно увидеть в Музее Искусств (Metropolitan Museum of Art) в Нью-Йорке.

Заключение

Гиперкуб — одна из простейших четырехмерных объектов, на примере которого можно увидеть всю сложность и необычность четвертого измерения. И то, что выглядит невозможным в трех измерениях, возможно в четырех, например, невозможные фигур. Так, например, бруски невозможного треугольника в четырех измерениях будут соединены под прямыми углами. И эта фигура будет выглядеть так со всех точек обзора, и не будет искажаться в отличие от реализаций невозможного треугольника в трехмерном пространстве (см. «Невозможные фигуры в реальном мире»).

Источник

Оцените статью
Юридический портал
Adblock
detector