Площадь грани куба авсда1в1с1д1

Нахождение площади поверхности куба: формула и задачи

В данной публикации мы рассмотрим, как можно найти площадь поверхности куба и разберем примеры решения задач для закрепления материала.

Формула вычисления площади куба

1. Через длину ребра

Площадь (S) поверхности куба равна произведению числа 6 на длину его ребра в квадрате.

Данная формула получена следующим образом:

    Куб – это правильная геометрическая фигура, все грани которого являются равными квадратами с длиной стороны a (одновременно является ребром куба).

2. Через длину диагонали грани

Сторона любой грани куба (ребро) может быть рассчитана через длину ее диагонали по формуле: a=d/√ 2 .

Это значит, что вычислить площадь поверхности фигуры можно так:

S = 6 ⋅ (d/√ 2 ) 2

Примеры задач

Задание 1
Найдите площадь поверхности куба, если длина его ребра составляет 12 см.

Решение:
Используем первую формулу выше и получаем:
S = 6 ⋅ (12 см) 2 = 864 см 2 .

Задание 2
Площадь поверхности куба равняется 294 см 2 . Вычислите длину его ребра.

Решение:
Примем ребро куба за a. Из формулы расчета площади следует:

Задание 3
Вычислите площадь поверхности куба, если диагональ его грани равняется 5 см.

Решение:
Воспользуемся формулой, в которой задействована длина диагонали:
S = 6 ⋅ (5 см : √ 2 ) 2 = 75 см 2 .

Источник

Площадь грани куба авсда1в1с1д1

а) Докажите, что B1KLM — правильная пирамида.

а) Рассмотрим правильный тетраэдр B1AD1C. В нём B1K = B1L = B1M — апофемы боковых граней — равных равносторонних треугольников. Следовательно, боковые ребра пирамиды B1KLM равны. Кроме того, в основании этой пирамиды лежит равносторонний треугольник KLM. Следовательно, пирамида правильная. Что и требовалось доказать.

так как высота общая.

Объём куба равен 216. Тогда

Критерии оценивания выполнения задания Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) 3
Получен обоснованный ответ в пункте б)

имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки

2
Имеется верное доказательство утверждения пункта а)

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Источник

Площадь грани куба авсда1в1с1д1

а) Докажите, что B1KLM — правильная пирамида.

а) Рассмотрим правильный тетраэдр B1AD1C. В нём B1K = B1L = B1M — апофемы боковых граней — равных равносторонних треугольников. Следовательно, боковые ребра пирамиды B1KLM равны. Кроме того, в основании этой пирамиды лежит равносторонний треугольник KLM. Следовательно, пирамида правильная. Что и требовалось доказать.

так как высота общая.

Объём куба равен 216. Тогда

Критерии оценивания выполнения задания Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) 3
Получен обоснованный ответ в пункте б)

имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки

2
Имеется верное доказательство утверждения пункта а)

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Источник

Площадь грани куба авсда1в1с1д1

В кубе ABCDA1B1C1D1 все рёбра равны 7. На его ребре BB1 отмечена точка K так. что KB = 4. Через точки K и C1 проведена плоскость α, параллельная прямой BD1.

б) Найдите объём большей из двух частей куба, на которые он делится плоскостью α.

а) Проведём через точку K прямую, параллельную BD1. Пусть эта прямая пересекает плоскость грани A1B1C1D1 в точке L. Прямая KL лежит в плоскости BB1D1, значит, точка L лежит на диагонали B1D1. Более того,

Прямая C1L пересекает ребро A1B1 в точке P, принадлежащей плоскости α.

Значит,

б) Объём куба ABCDA1B1C1D1 равен 343. Объём тетраэдра PKC1B1 равен одной шестой произведения его измерений:

Значит, объём оставшейся части равен

Ответ: б)

Критерии оценивания выполнения задания Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) 3
Получен обоснованный ответ в пункте б)

имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки

2
Имеется верное доказательство утверждения пункта а)

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Источник

Подготовка к ЕГЭ

Разновидности стереометрических задач .

Просмотр содержимого документа
«Подготовка к ЕГЭ»

ПОДГОТОВКА К ЕГЭ. СТЕРЕОМЕТРИЧЕСКАЯ ЗАДАЧА(№14).

Работа учителя математики

Разновидности стереометрических задач.

  • Расстояние от точки до прямой и до плоскости .
  • Расстояние между прямыми и плоскостями .
  • Угол между скрещивающимися прямыми .
  • Угол между прямой и плоскостью .
  • Угол между плоскостями .
  • Задача на доказательство и вычисление .
  • Сечения многогранников .
  • Объёмы многогранников .
  • Круглые тела: цилиндр, конус, шар.

Расстояние от точки до прямой.

  • Расстояние от точки до прямой , не содержащей эту точку, есть длина отрезка перпендикуляра, проведенного из этой точки на прямую.
  • Расстояние между двумя параллельными прямыми равно длине отрезка их общего перпендикуляра.
  • Расстояние между двумя параллельными прямыми равно расстоянию от любой точки одной из этих прямых до другой прямой .

В единичном кубе ABCDA ₁B₁C₁D₁ найти расстояние от точки D₁ до прямой PQ,

где P и Q – середины соответственно

В единичном кубе ABCDA ₁B₁C₁D₁ найти расстояние от точки С до прямой ВД1.

Дано: АВСДА 1 В 1 С 1 Д 1 – куб. АВ = 1. Найти: Расстояние от точки С до прямой ВД 1 .

1. ∆ВСД 1 – прямоугольный ( по теореме о трёх

перпендикулярах), ∠Д 1 СВ – прямой .

2. СН – высота ∆ВСД 1 , значит СВ – среднее

пропорциональное между ВН и ВД 1 , тогда

СН – расстояние от точки С до прямой ВД 1 , поэтому СН – высота треугольника ВСД 1 . СН = 2·S ∆ВСД 1 : ВД 1 .

∆ Д 1 СВ – прямоугольный, т.к. Д 1 С  СВ

по теореме о трёх перпендикулярах .

Расстояние от точки до плоскости .

  • Расстояние от точки до плоскости , не содержащей эту точку, есть длина отрезка перпендикуляра, опущенного из этого точки на плоскость.
  • Расстояние между прямой и параллельной ей плоскостью равно длине их общего перпендикуляра.
  • Расстояние между прямой и параллельной ей плоскостью равно расстоянию от любой точки этой прямой до плоскости.
  • Расстояние между двумя параллельными плоскостями равно длине их общего перпендикуляра.
  • Расстояние между двумя параллельными плоскостями равно расстоянию между точкой одной из этих плоскостей и другой плоскостью.

  • В единичном кубе ABCDA₁B₁C₁D₁ найдите расстояние от точки C₁ до плоскости AB₁C.

  • В правильной треугольной призме АВСА1В1С1–все рёбра равны 1.Найдите расстояние от точки А до плоскости (ВСА1)

Дано: АВСА 1 В 1 С 1 – правильная треугольная призма, все рёбра равны 1. Найдите: Расстояние от точки А до плоскости (ВСА 1 )

Решение: h – расстояние от точки А до плоскости (ВСА 1 ),

поэтому h – высота пирамиды АВСА 1

. Пусть основанием пирамиды будет ∆АВС,

∆ ВСА 1 – равнобедренный, А1К – его высота, тогда

За страницами учебника Расстояние от точки А до плоскости можно вычислить по формуле:

они лежат в плоскости (ВСА 1 ).Рассмотрим

тогда получаем систему уравнений:

Расстояние между прямыми и плоскостями .

  • Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми. Общий перпендикуляр к двум скрещивающимся прямым существует и единственен.

Дано: АВСДА 1 В 1 С 1 Д 1 – куб. Все его рёбра равны 1. Найти: расстояние между прямыми АВ 1 и ВС 1 .

следовательно расстояние между скрещивающимися

прямыми ВС 1 и АВ 1 равно расстоянию между

соответствующими плоскостями. Диагональ СА 1

перпендикулярна этим плоскостям.

EF – расстояние между ВС 1 и АВ 1 .

В ∆ АСЕ отрезок ОF ║ АЕ и проходит через середину отрезка АС, следовательно ОF – средняя линия треугольника АСЕ и, значит, ЕF = FC. Аналогично, О 1 Е – средняя линия треугольника А 1 С 1 F

Расстояние между скрещивающимися прямыми можно найти по формуле:

Дано: АВСДА 1 В 1 С 1 Д 1 – куб. Все его рёбра равны 1. Найдите расстояние между прямыми АВ 1 и ВС 1 .

  • SABCD – правильная четырёхугольная пирамида, все рёбра которой равны 1.Найдите расстояние между прямыми АS и ВС.

Дано: SABCD – правильная четырёхугольная пирамида, все рёбра которой равны 1. Найдите: Расстояние между прямыми АS и ВС.

Угол между прямой и плоскостью .

  • Прямая и плоскость пересекаются , если они имеют одну единственную общую точку, которую называют точкой пересечения прямой и плоскости .
  • Прямая перпендикулярна к плоскости , если она перпендикулярна к любой прямой, лежащей в этой плоскости.
  • Проекцией точкиМна плоскость называется либо сама точка М , если М лежит в плоскости , либо точка пересечения плоскости и прямой, перпендикулярной к плоскости и проходящей через точку М , если точка М не лежит в плоскости .
  • Проекцией прямойaна плоскость называют множество проекций всех точек прямой a на плоскость .
  • Угол между прямой и плоскостью , пересекающей эту прямую и не перпендикулярной к ней, — это угол между прямой и ее проекцией на эту плоскость.
  • Определение угла между прямой и плоскостью позволяет заключить, что угол между прямой и плоскостью представляет собой угол между двумя пересекающимися прямыми : самой прямой и ее проекцией на плоскость. Следовательно, угол между прямой и плоскостью есть острый угол.

На векторах построена пирамида. Найдите угол между прямой AD и плоскостью ABC .

  • На векторах построена пирамида. Найдите угол между прямойADи плоскостьюABC .

  • Чтобы вычислить угол между прямой и плоскостью по полученной формуле, нам нужно знать координаты направляющего вектора прямой и нормального вектора плоскости. Направляющим вектором прямойADявляется вектор

Нормальный вектор плоскости АВС перпендикулярен и вектору и вектору , то есть, в качестве нормального вектора плоскости АВС можно взять векторное произведение векторов и :

Осталось подставить координаты векторов в формулу и вычислить требуемый угол между прямой и плоскостью:

Задача на доказательство и вычисление .

В конус, радиус основания которого равен 3, вписан шар радиуса 1,5.

а) Изобразите осевое сечение комбинации этих тел.

б) Найдите отношение площади полной поверхности конуса к площади поверхности шара.

В основании правильной треугольной призмы ABCA 1 B 1 C 1 лежит треугольник со стороной 6. Высота призмы равна 4. Точка N — середина ребра A 1 C 1 .

а) Постройте сечение призмы плоскостью BAN .

б) Найдите периметр этого сечения.

Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.

Данный материал характеризуется следующим особенностями:

Метод сечений применяется только для многогранников, так как различные сложные (наклонные) виды сечений тел вращения не входят в программу средней школы.

В задачах используются в основном простейшие многогранники.

Задачи представлены в основном без числовых данных, чтобы создать возможность их многовариантного использования.

Чтобы решить задачу построения сечения многогранника ученик должен знать:

  • что значит построить сечение многогранника плоскостью;
  • как могут располагаться относительно друг друга многогранник и плоскость;
  • как задается плоскость;
  • когда задача на построение сечения многогранника плоскостью считается решенной.

Поскольку плоскость определяется:

построение плоскости сечения проходит в зависимости от задания этой плоскости. Поэтому все способы построения сечений многогранников можно разделить на методы.

Существует три основных метода построения сечений многогранников:

Метод следов. Метод вспомогательных сечений. Комбинированный метод.

Первые два метода являются разновидностями Аксиоматического метода построения сечений.

Можно также выделить следующие методы построения сечений многогранников:

построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;

  • построение сечения, проходящего через заданную прямую параллельно другой заданной прямой;
  • построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;
  • построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;
  • построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой.

  • В правильной четырёхугольной пирамидеMABCDс вершинойMстороны основания равны 1, а боковые рёбра равны 2. ТочкаNпринадлежит ребруMC,причёмMN: NC = 2:1.Найдите площадь сечения пирамиды плоскостью, проходящей через точкиBиNпараллельно прямойAC.
  • См . сайт «Решу ЕГЭ»

Источник

Оцените статью
Юридический портал
Adblock
detector