Куб скрещивающиеся ребра куба

Куб скрещивающиеся ребра куба

ПРЯМАЯ ПРИЗМА. ПОВЕРХНОСТЬ И ОБЪЁМ ПРЯМОЙ ПРИЗМЫ.

На чертеже 286 изображена выкройка, или, как её принято называть, развёртка геометрического тела. Она состоит из шести равных квадратов. Если эту развёртку согнуть надлежащим образом по указанным на чертеже пунктирным линиям, то мы получим геометрическое тело, называемое кубом.

Под номером 287 дан чертёж куба, а под номером 288 дан рисунок куба. Куб ограничен шестью равными квадратами, которые называются его гранями.

На рисунке видны только три его грани, а на чертеже можно видеть все шесть граней. Любые две противоположные грани куба называются его основаниями, тогда остальные четыре его грани называются боковыми гранями; отрезки, которые получаются при пересечении граней куба, называются его рёбрами. У куба 12 рёбер. Все они равны между собой.При пересечении трёх граней куба образуются точки, которые называются его в е р ш и н а м и. У куба 8 вершин.

2. Взаимное положение рёбер и граней куба.

Противоположные грани куба параллельны. Плоскости, в которых лежат эти грани, не пересекаются, т. е. не имеют общих точек. Параллельные плоскости мы наблюдаем на многих окружающих нас предметах; например, плоскости пола и потолка в комнате параллельны.
В кубе можно наблюдать и пересекающиеся плоскости. Пересекаясь, плоскости образуют двугранные углы. Модель двугранных углов можно получить, сгибая лист картона или бумаги по прямой линии.

Двугранные углы можно получить острые, прямые и тупые. Грани куба пересекаются под прямым углом. Под прямым углом пересекаются также стены в комнате, стены и потолок, стены и пол. Плоскости, пересекающиеся под прямым углом, называются перпендикулярными. Перпендикулярность плоскостей проверяется с помощью угольника. На чертеже 289 плоскости при пересечении образуют прямой угол. На чертеже 290 и на чертеже 291 показаны плоскости, которые при пересечении не образуют прямого угла; в первом случае они пересекаются под острым углом, во втором случае — под тупым.

Рёбра куба, находящиеся на одной грани (черт. 287), или пересекаются под прямым углом (ЕА _|_ АВ, КС _|_ ВС и т. д.), или параллельны (ЕF || АВ, ВС || КF и т. д.).

Рёбра куба, например КС и АВ (черт. 287), не параллельны, но и не пересекутся, сколько бы их ни продолжать. Прямые, которые не параллельны и не пересекаются, называются скрещивающимися. Легко получить модели скрещивающихся прямых. Например, две иглы, из которых одна положена на стол, а другая воткнута в стол так, что не пересекает первую, представляют собой модель двух скрещивающихся прямых (черт. 292). Эти две прямые не пересекаются и не параллельны; легко убедиться, что через них нельзя провести плоскость.

Точно так же, если взять две дощечки, поместить их параллельно друг другу и затем на одну из них положить палочку в направлении, например, с юга на север, а на другую — в направлении с запада на восток, то эти две палочки образуют модель скрещивающихся прямых (черт. 293).

Эти две прямые тоже не пересекаются, не параллельны, и через них также нельзя провести плоскость.

Найдите модели скрещивающихся прямых на окружающих предметах, например, в классной комнате.

4. Прямая, перпендикулярная к плоскости.

Рассматривая куб (черт. 287), заметим, что ребро FВ образует прямые углы с рёбрами ВС и АВ, лежащими на нижнем основании куба. Это же ребро FВ образует прямые углы с любой прямой, проведённой в плоскости основания куба через точку В. Ребро FВ является перпендикуляром к плоскости основания куба.

Перпендикуляром к плоскости называется прямая, которая пересекает плоскость в какой-нибудь точке и перпендикулярна к любой прямой, проведённой в этой плоскости через ту же точку.

Чтобы провести перпендикуляр к плоскости, берут два чертёжных треугольника и ставят их так, чтобы два катета лежали на плоскости, как показано на чертеже 294, а другую пару катетов совмещают. Эти два катета и образуют перпендикуляр к данной плоскости.

На чертеже 294 прямая АВ перпендикулярна к плоскости Р.

Перпендикулярность прямой АВ к плоскости Р легко проверить: для этого надо взять ещё один чертёжный треугольник и несколько раз в различных положениях приложить его к двум первым треугольникам так, чтобы его катет всякий раз совмещался с катетом АВ. Тогда другой катет третьего треугольника всё время будет находиться в плоскости Р. Значит, можно считать проверенным, что прямая АВ образует прямые углы с любой прямой, проведённой на плоскости через её основание, т. е. является перпендикуляром к плоскости.

Таким образом, мы приходим к выводу: если прямая, пересекающая плоскость в какой-нибудь точке О, перпендикулярна к двум прямым, проведённым на плоскости через точку О, то эта прямая перпендикулярна к плоскости.

Этот вывод является признаком перпендикулярности прямой к плоскости.

Через любую произвольно взятую точку можно провести перпендикуляр к данной плоскости, но только один.

Длина перпендикуляра, опущенного из какой-нибудь точки на плоскость, называется расстоянием от этой точки до плоскости.

5. Площадь поверхности куба.

Чтобы вычислить площадь поверхности куба, достаточно вычислить площадь одной его грани и полученное число помножить на 6. Если ребро куба обозначить через а, то площадь поверхности одной его грани будет равна а 2 , а площадь всей поверхности куба (полная поверхность) составит 6а 2 .

S = 6а 2 , где S — площадь полной поверхности куба.

Площадь поверхности его оснований составит 2а 2 . Площадь поверхности боковых его граней составит 4а 2 .

1. Ребро куба равно 8 см (10 см, 12 см, 20 см). Вычислить площадь всей его поверхности; площадь оснований; площадь его боковой поверхности.

2. Площадь полной поверхности куба равна 150 кв. см (600 кв. см, 216 кв. см, 864 кв. см). Вычислить длину его ребра.

3. Площадь боковой поверхности куба равна 100 кв. см (64 кв. см, 324 кв. см, 576 кв. см). Вычислить площадь его полной поверхности.

4. Сделать из плотной бумаги модель куба, ребро которого равно 8 см.

Указание. Для того чтобы полученное геометрическое тело сохраняло свою форму, у развёртки куба необходимо сделать небольшие закраины (черт. 295). Если их подклеить, они составят каркас, который придаст необходимую жёсткость модели.

5. Сколько потребуется белил для окраски с обеих сторон бака (без крышки), имеющего форму куба с ребром в 80 см, если на окраску 1 кв.м требуется белил 0,25 кг?

Источник

Гексаэдр. Куб.

Древние греки дали многограннику имя по числу граней. «Гекса» означает шесть, «хедра» — означает грань (Гексаэдр – шестигранник).

Поэтому на вопрос — «что такое гексаэдр?», можно дать следующее определение: » Гексаэдр это геометрическое тело из шести граней, каждая их которых — правильный четырёхугольник (квадрат) «.

Многогранник относится к правильным многогранникам и является одним из пяти Платоновых тел .

Гранью многогранника является квадрат. Каждый из четырех углов равен 90 градусов.

Характеристики гексаэдра (куба)

Число рёбер, примыкающих к каждой вершине — 3

У каждого ребра (красный) имеются 4 скрещивающихся с ним ребра.

Определить количество пар скрещивающихся рёбер можно умножив общее количество рёбер на 4 и разделив на 2.

Всего куб имеет 24 пары скрещивающихся рёбер.

Количество пар параллельных граней — 3

Расстояние между противоположными рёбрами можно определить по формуле

Длину диагонали куба можно определить по формуле

Куб имеет 9 осей симметрии.

Три оси симметрии это прямые проходящие через центр параллельных граней куба:

Шесть осей симметрии это прямые соединяющие центры противолежащих рёбер куба:

Куб имеет 9 плоскостей симметрии

Три плоскости проходят через центр параллельно граням

Шесть плоскостей проходят через центр по диагонали

Куб может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы.

Радиус описанной сферы куба

Сфера может быть вписана внутрь куба.

Радиус вписанной сферы куба

Сферу можно вписать в куб таким образом, что она коснется поверхностью всех рёбер куба. Такая сфера именуется — полувписанная в куб.

Радиус полувписанной сферы можно определить по формуле:

Площадь поверхности куба

Для наглядности площадь поверхности куба можно представить в виде площади развёртки.

Площадь поверхности можно определить как площадь одной из сторон куба (это площадь правильного четырехугольника — квадрата) умноженной на 6. Либо воспользоваться формулой:

Объем куба определяется по следующей формуле:

Вариант развертки

Куб можно изготовить самостоятельно. Бумага или картон самый подходящий вариант. Для сборки потребуется бумажная развёртка — единая деталь с линиями сгибов.

Древнегреческий философ Платон ассоциировал гексаэдр с землёй – одним из базовых «земных» элементов, поэтому для построения модели этого правильного многогранника мы выбрали коричневый цвет.

На рис.2 представлена развертка гексаэдра:

Для построения модели Вы можете скачать развертку в формате pdf и распечатать на листе формата А4:
— если Вы предполагаете распечатать на цветном принтере — цветная развертка (pdf)
— если Вы предполагаете использовать для сборки цветной картон — разверткa (pdf)

Куб из набора «Волшебные грани»

Вы можете изготовить модель додекаэдра воспользовавшись деталями для сборки из набора «Волшебные грани».

Источник

Скрещивающиеся прямые

10 класс Презентация будет полезна учителям и учащимся.

Просмотр содержимого документа
«Скрещивающиеся прямые»

Определение. Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости.

Взаимное расположение двух прямых в пространстве

Не лежат в одной плоскости (скрещиваются)

Имеют общую точку (пересекаются)

Не имеют общих точек (параллельны)

Признак скрещивающихся прямых

Теорема. Если одна прямая лежит в данной плоскости, а другая прямая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти две прямые скрещиваются.

Доказательство. Пусть прямая a лежит в плоскости , а прямая b пересекает плоскость в точке B , не принадлежащей прямой a . Если бы прямые a и b лежали в одной плоскости, то в этой плоскости лежала бы и точка B . Поскольку через прямую и точку вне этой прямой проходит единственная плоскость, то этой плоскостью должна быть плоскость . Но тогда прямая b лежала бы в плоскости , что противоречит условию. Следовательно, прямые a и b не лежат в одной плоскости, т.е. скрещиваются.

Всегда ли две не пересекающиеся прямые в пространстве скрещиваются?

Назовите прямые, проходящие через вершины куба A…D 1 и скрещивающиеся с прямой AB .

Сколько имеется пар скрещивающихся прямых, содержащих ребра куба A…D 1 ?

Решение: Каждое ребро участвует в четырех парах скрещивающихся прямых. У куба имеется 12 ребер. Следовательно, искомое число пар параллельных прямых равно

В тетраэдре ABCD укажите пары скрещивающихся ребер.

Сколько имеется пар скрещивающихся прямых, содержащих ребра правильной треугольной призмы?

Решение: Для каждого ребра оснований имеется три ребра, с ним скрещивающихся. Для каждого бокового ребра имеется два ребра, с ним скрещивающихся. Следовательно, искомое число пар скрещивающихся прямых равно

Сколько имеется пар скрещивающихся прямых, содержащих ребра правильной шестиугольной призмы?

Решение: Каждое ребро оснований участвует в 8 парах скрещивающихся прямых. Каждое боковое ребро участвует в 8 парах скрещивающихся прямых. Следовательно, искомое число пар скрещивающихся прямых равно

Назовите прямые, содержащие ребра многогранника, изображенного на рисунке, все плоские углы которого прямые, скрещивающиеся с прямой AA 2 .

В режиме слайдов ответ появляется после кликанья мышкой

Назовите прямые, содержащие ребра многогранника, изображенного на рисунке, все плоские углы которого прямые, скрещивающиеся с прямой AB .

В режиме слайдов ответ появляется после кликанья мышкой

Сколько имеется пар скрещивающихся прямых, содержащих ребра октаэдра?

Решение: Для каждого ребра имеется четыре ребра, с ним скрещивающихся. У октаэдра 12 ребер. Следовательно, искомое число пар скрещивающихся прямых равно

Сколько имеется пар скрещивающихся прямых, содержащих ребра икосаэдра?

Решение: Для каждого ребра имеется 20 ребер, с ним скрещивающихся. У икосаэдра 30 ребер. Следовательно, искомое число пар скрещивающихся прямых равно

Сколько имеется пар скрещивающихся прямых, содержащих ребра додекаэдра?

Решение: Для каждого ребра имеется 24 ребра, с ним скрещивающихся. У додекаэдра 30 ребер. Следовательно, искомое число пар скрещивающихся прямых равно

Как расположены в пространстве прямые a и b , проведенные в плоскостях и ?

Как в пространстве расположены прямые EF и GH , проведенные в плоскостях граней куба AD 1 ?

Как в пространстве расположены прямые EF и GH , проведенные в плоскостях граней тетраэдра?

Как в пространстве расположены прямые EH и FG ?

Источник

Оцените статью
Юридический портал
Adblock
detector