Куб основание боковые ребра высота боковая поверхность

Содержание
  1. Геометрические фигуры. Куб.
  2. Куб основание боковые ребра высота боковая поверхность
  3. Объем призмы
  4. Объем параллелепипеда
  5. Объем прямоугольного параллелепипеда
  6. Объем пирамиды
  7. Объем правильного тетраэдра
  8. Объем цилиндра
  9. Объем конуса
  10. Объем шара
  11. Площадь куба
  12. Площадь прямоугольного параллелепипеда
  13. Площадь цилиндра
  14. Куб основание боковые ребра высота боковая поверхность
  15. Свойства куба:
  16. Прямоугольный параллелепипед
  17. Пирамида
  18. Что такое куб: определение, свойства, формулы
  19. Определение куба
  20. Свойства куба
  21. Свойство 1
  22. Свойство 2
  23. Свойство 3
  24. Формулы для куба
  25. Диагональ
  26. Диагональ грани
  27. Площадь полной поверхности
  28. Периметр ребер
  29. Объем
  30. Радиус описанного вокруг шара
  31. Радиус вписанного шара
  32. Куб — свойства, виды и формулы
  33. Элементы куба
  34. Грань
  35. Ребро
  36. Вершина
  37. Центр грани
  38. Центр куба
  39. Ось куба
  40. Диагональ куба
  41. Диагональ грани куба
  42. Объем куба
  43. Периметр куба
  44. Площадь поверхности
  45. Сфера, вписанная в куб
  46. Сфера, описанная вокруг куба
  47. Координаты вершин куба
  48. Свойства куба

Геометрические фигуры. Куб.

Куб или правильный гексаэдр – это правильный многогранник, у которого все грани это квадраты.

Куб является частным случаем параллелепипеда и призмы. 4 сечения куба имеют вид правильных

шестиугольников — это сечения через центр куба перпендикулярно 4-м главным диагоналям.

В кубе насчитывается шесть квадратов. Все вершины куба являются вершинами 3-х квадратов. То есть,

сумма плоских углов у каждой вершины = 270º.

Число рёбер примыкающих к вершине – 3;

Предположим, что а – длина стороны куба, а d — диагональ, тогда:

Диагональ куба – это отрезок, который соединяет 2 вершины, которые симметричны относительно центра

Свойства куба.

  • 4 сечения куба имеют вид правильных шестиугольников — они проходят сквозь центр куба

перпендикулярно четырём его главным диагоналям.

  • В куб вписывают тетраэдр 2-мя способами. В любом из них 4-ре вершины тетраэдра всегда

совмещены с 4-мя вершинами куба и каждое из шести ребер тетраэдра принадлежат граням куба. В 1-м

случае каждая вершина тетраэдра принадлежит граням трехгранного угла, вершиной совпадающего с одной

из вершин куба. Во 2-м случае ребра тетраэдра, которые попарно скрещиваются принадлежат попарно

противоположным граням куба. Такой тетраэдр будет правильным, а его объём будет составлять треть от

  • В куб вписывают октаэдр, при этом все 6 вершин октаэдра совмещаются с центрами 6-ти граней
  • Куб вписывают в октаэдр, при этом все 8 вершин куба располагаются в центрах 8-ми граней
  • В куб вписывают икосаэдр, притом 6 взаимно параллельных рёбер икосаэдра располагаются на

6-ти гранях куба, следующие 24 ребра располагаются внутри куба. Каждая из 12 вершин икосаэдра

располагается на 6-ти гранях куба.

Элементы симметрии куба.

Ось симметрии куба может пролегать или сквозь середины ребер, которые

параллельны, не принадлежащих одной из граней, или сквозь точку

пересечения диагоналей противолежащих граней. Центром симметрии

куба будет точка пересечения диагоналей куба.

Сквозь центр симметрии куба проходят 9 осей симметрии.

Плоскостей симметрии у куба тоже 9, они пролегают или

через противолежащие ребра (таких плоскостей 6), или

через середины противолежащих ребер (таких 3).

Источник

Куб основание боковые ребра высота боковая поверхность

Объем куба равен кубу длины его грани.

Объем призмы

Объем призмы равен произведению площади основания призмы, на высоту.

Объем параллелепипеда

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда

Объем прямоугольного параллелепипеда

Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

Формула объема прямоугольного параллелепипеда

Объем пирамиды

Объем пирамиды равен трети от произведения площади ее основания на высоту.

Объем правильного тетраэдра

Формула объема правильного тетраэдра

Объем цилиндра

Объем цилиндра равен произведению площади его основания на высоту.

    Формулы объема цилиндра
    V =

Объем конуса

Объем конуса равен трети от произведению площади его основания на высоту.

Объем шара

Объем шара равен четырем третим от его радиуса в кубе помноженого на число пи.

Площадь куба

Площадь поверхности куба равна квадрату длины его грани умноженному на шесть.

Площадь прямоугольного параллелепипеда

Формула площади поверхности прямоугольного параллелепипеда

Площадь цилиндра

Площадь боковой поверхности круглого цилиндра равна произведению периметра его основания на высоту.

Формула для вычисления площади боковой поверхности цилиндра

Площадь полной поверхности круглого цилиндра равна сумме площади боковой поверхности цилиндра и удвоенной площади основания.

Формула для вычисления площади полной поверхности цилиндра

Источник

Куб основание боковые ребра высота боковая поверхность

Куб – правильный многогранник, каждая грань которого представляет собой квадрат. Все ребра куба равны.

Свойства куба:

1. В кубе $6$ граней и все они являются квадратами.

2. Противоположные грани попарно параллельны.

3. Все двугранные углы куба – прямые.

5. Куб имеет $4$ диагонали, которые пересекаются в одной точке и делятся в ней пополам.

6. Диагональ куба в $√3$ раз больше его ребра

7. Диагональ грани куба в $√2$ раза больше длины ребра.

Пусть $а-$длина ребра куба, $d-$диагональ куба, тогда справедливы формулы:

Площадь полной поверхности: $S_<п.п>=6а^2=2d^2$

Радиус сферы, описанной около куба: $R=/<2>$

Радиус сферы, вписанной в куб: $r=/<2>$

При увеличении всех линейных размеров куба в $k$ раз, его объём увеличится в $k^3$ раз.

При увеличении всех линейных размеров куба в $k$ раз, площадь его поверхности увеличится в $k^2$ раз.

Прямоугольный параллелепипед

Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.

1. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.

Чтобы были понятны формулы, введем обозначения:

$с$-высота(она же боковое ребро);

$S_<п.п>$-площадь полной поверхности;

$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.

Пирамида

Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) — треугольники, имеющие общую вершину.

Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.

Формулы вычисления объема и площади поверхности правильной пирамиды.

$h_a$ — высота боковой грани (апофема)

В основании лежат правильные многоугольники, рассмотрим их площади:

  1. Для равностороннего треугольника $S=√3>/<4>$, где $а$ — длина стороны.
  2. Квадрат $S=a^2$, где $а$ — сторона квадрата.

Задачи на нахождение объема составного многогранника:

  1. Разделить составной многогранник на несколько параллелепипедов.
  2. Найти объем каждого параллелепипеда.
  3. Сложить объемы.

Задачи на нахождение площади поверхности составного многогранника.

— Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:

Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.

— Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.

Источник

Что такое куб: определение, свойства, формулы

В публикации мы рассмотрим определение и основные свойства куба, а также формулы, касающиеся данной геометрической фигуры (расчет площади поверхности, периметра ребер, объема, радиуса описанного/вписанного шара и т.д.).

Определение куба

Куб – это правильный многогранник, все грани которого являются квадратами.

Примечание: куб является частным случаем параллелепипеда или призмы.

Свойства куба

Свойство 1

Как следует из определения, все ребра и грани куба равны. Также противоположные грани фигуры попарно параллельны, т.е.:

Свойство 2

Диагонали куба (их всего 4) равны и в точке пересечения делятся пополам.

Свойство 3

Все двугранные углы куба (углы между двумя гранями) равны 90°, т.е. являются прямыми.

Например, на рисунке выше угол между гранями ABCD и AA1B1B является прямым.

Формулы для куба

Примем следующие обозначения, которые будут использоваться далее:

  • a – ребро куба;
  • d – диагональ куба или его грани.

Диагональ

Длина диагонали куба равняется длине его ребра, умноженной на квадратный корень из трех.

Диагональ грани

Диагональ грани куба равна его ребру, умноженному на квадратный корень из двух.

Площадь полной поверхности

Площадь полной поверхности куба равняется шести площадям его грани. В формуле может использоваться длина ребра или диагонали.

Периметр ребер

Периметр куба равен длине его ребра, умноженной на 12. Также может рассчитываться через диагональ.

Объем

Объем куба равен длине его ребра, возведенной в куб.

Радиус описанного вокруг шара

Радиус шара, описанного около куба, равняется половине его диагонали.

Радиус вписанного шара

Радиус вписанного в куб шара равен половине длины его ребра.

Источник

Куб — свойства, виды и формулы

Среди многогранников куб – это один из наиболее известных объектов, знакомых с далёкого детства. Более подробно эта тема изучается на уроках геометрии в старших классах, когда от фигур на плоскости переходят к телам в пространстве.

Кубу можно дать определение различными способами, каждый из которых только подчеркнёт тот или иной класс тел в пространстве, выделит основные признаки и особенности:

многогранник, у которого все рёбра равны, а грани попарно перпендикулярны;

прямая призма, все грани которой есть квадраты;

прямоугольный параллелепипед, все рёбра которого равны.

Всеми этими и многими другими подобными формулировками геометрия позволяет описывать одну и ту же фигуру в пространстве.

Элементы куба

Основными элементами многогранника считаются грани, рёбра, вершины.

Грань

Плоскости, образующие поверхность куба, называются гранями. Другое название – стороны.

Интересно, сколько граней у куба и каковы их особенности. Всего граней шесть. Две из них, параллельные друг другу, считаются основаниями, остальные – боковыми.

Грани куба попарно перпендикулярны, являются квадратами, равны между собой.

Ребро

Линии пересечения сторон называются рёбрами.

Не каждый школьник может ответить, сколько рёбер у куба. Их двенадцать. Они имеют одинаковые длины. Те из них, что обладают общим концом, расположены под прямым углом по отношению к любому из двух остальных.

Рёбра могут пересекаться в вершине, быть параллельными. Не лежащие в одной грани ребра, являются скрещивающимися.

Вершина

Точки пересечения рёбер называются вершинами. Их число равно восьми.

Центр грани

Отрезок, соединяющий две вершины, не являющийся ребром, называется диагональю.

Пересечение диагоналей грани считается центром грани – точкой, равноудалённой от всех вершин и сторон квадрата. Это есть центр симметрии грани.

Центр куба

Пересечение диагоналей куба является его центром – точкой, равноудалённой от всех вершин, рёбер и сторон многогранника.

Это есть центр симметрии куба.

Ось куба

Рассматриваемый многогранник имеет несколько осей ортогональной (под прямым углом) симметрии. К ним относятся: диагонали куба и прямые, проходящие через его центр параллельно рёбрам.

Диагональ куба

Отрезок, соединяющий две вершины, не принадлежащие одной стороне, называется диагональю рассматриваемого многогранника.

Учитывая, что ребра куба имеют равные измерения a, можно найти длину диагонали:

Формула доказывается с помощью дважды применённой теоремы Пифагора.

Диагональ куба — одна из осей симметрии.

Все диагонали куба равны между собой и точкой пересечения делятся пополам.

Диагональ грани куба

Длина диагонали грани в √2 раз больше ребра, то есть:

Эта формула доказывается также с помощью теоремы Пифагора.

Объем куба

Как для любого параллелепипеда, объём куба равен произведению всех трёх измерений, которые в данном случае равны:

Периметр куба

Сумма длин всех рёбер равна:

Площадь поверхности

Сумма площадей всех граней называется площадью поверхности куба. Она равна:

Сфера, вписанная в куб

Такая сфера имеет центр, совпадающий с центром куба.

Радиус равен половине ребра:

Сфера, описанная вокруг куба

Как для вписанной сферы, центр совпадает с точкой пересечения диагоналей, радиус равен половине диагонали:

Координаты вершин куба

В зависимости от расположения фигуры в системе координат, можно по-разному рассчитывать координаты вершин.

Наиболее часто используют следующий способ. Одна из вершин совпадает с началом координат, рёбра параллельны осям координат или совпадают с ними, координаты единичного куба в этом случае будут равны:

Такое расположение удобно для введения четырёхмерного пространства (вершины задаются всеми возможными бинарными наборами длины 4).

Свойства куба

Плоскость, рассекающая куб на две части, есть сечение. Его форма выглядит как выпуклый многоугольник.

Построение сечений необходимо для решения многих задач. Как правило, используется метод следов или условие параллельности прямых и плоскостей.

у куба все грани равны, являются квадратами;

один центр и несколько осей симметрии.

Источник

Оцените статью
Юридический портал
Adblock
detector