Кос в кубе икс производная

Производная косинуса

Если аргумент синуса является сложной функцией, тогда производная находится по формуле:

$$ (\cos u(x))’ = -\sin u(x) \cdot ( u(x) )’ = -u'(x)\sin u(x) $$

Аргумент косинуса представлен сложной функцией $ u(x) = 2x $. Поэтому применяем вторую формулу, в которой производная $ u'(x) = 2 $. Подставляем:

$$ y’ = (\cos 2x)’ = -\sin x \cdot (2x)’ = -2\sin x $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Пример 1
Найти производную косинуса двойного угла: $ y = \cos 2x $
Решение
Ответ
$$ y’ = -2\sin x $$

В этом случае косинус представлен в виде степенной функции, производную которой можно найти по формуле: $ (x^p)’ = px^ $. Затем нужно выполнить домножение на производную самого косинуса. Выполняем:

$$ y’=(\cos^2 x)’ = 2\cos x \cdot (\cos x)’ = 2\cos x \cdot (-\sin x) = -2 \cos x \sin x $$

По тригонометрической формуле синуса двойного угла: $ -2 \cos x \sin x = -\sin 2x $

Записываем окончательный ответ:

$$ y'(x) = -2 \cos x \sin x = -\sin 2x $$

Данный пример аналогичен предыдущему и решается по тем же формулам:

$$ y’ = (\cos^3 x)’ = 3\cos^2 x \cdot (\cos x)’ = $$

Так как $ (\cos x)’ = -\sin x $, то получаем:

$$ = 3\cos^2 x \cdot (-\sin x) = -3\cos^2 x \sin x $$

Источник

Производная косинуса: (cos x)′

Производная по переменной x от косинуса x равна минус синусу x:
( cos x )′ = – sin x .

Доказательство

Чтобы вывести формулу производной косинуса, воспользуемся определением производной:
.

Преобразуем это выражение, чтобы свести его к известным математическим законам и правилам. Для этого нам нужно знать четыре свойства.
1) Тригонометрические формулы. Нам понадобится следующая формула:
(1) ;
2) Свойство непрерывности функции синус:
(2) ;
3) Значение первого замечательного предела:
(3) ;
4) Свойство предела от произведения двух функций:
Если и , то
(4) .

Применяем эти законы к нашему пределу. Сначала преобразуем алгебраическое выражение
.
Для этого применим формулу
(1) ;
В нашем случае
; . Тогда
;
;
;
.

Сделаем подстановку . При , . Используем свойство непрерывности (2):
.

Сделаем такую же подстановку и применим первый замечательный предел (3):
.

Поскольку пределы, вычисленные выше, существуют, то применяем свойство (4):

.

Тем самым мы получили формулу производной косинуса.

Примеры

Рассмотрим простые примеры нахождения производных от функций, содержащих косинус. Найдем производные от следующих функций:
y = cos 2x; y = cos 3x; y = cos nx; y = cos 2 x ; y = cos 3 x и y = cos n x .

Пример 1

Найти производные от cos 2x, cos 3x и cos nx.

Исходные функции имеют похожий вид. Поэтому мы найдем производную от функции y = cos nx . Затем, в производную от cos nx , подставим n = 2 и n = 3 . И, тем самым, получим формулы для производных от cos 2x и cos 3x .

Итак, находим производную от функции
y = cos nx .
Представим эту функцию от переменной x как сложную функцию, состоящую из двух функций:
1) Функции , зависящей от переменной : ;
2) Функции , зависящей от переменной : .
Тогда исходная функция является сложной (составной) функцией, составленной из функций и :
.

Найдем производную от функции по переменной x:
.
Найдем производную от функции по переменной :
.
Применяем формулу производной сложной функции.
.
Подставим :
(П1) .

Теперь, в формулу (П1) подставим и :
;
.

Пример 2

Найти производные от косинуса в квадрате, косинуса в кубе и косинуса в степени n:
y = cos 2 x ; y = cos 3 x ; y = cos n x .

В этом примере также функции имеют похожий вид. Поэтому мы найдем производную от самой общей функции – косинуса в степени n:
y = cos n x .
Затем подставим n = 2 и n = 3 . И, тем самым, получим формулы для производных от косинуса в квадрате и косинуса в кубе.

Итак, нам нужно найти производную от функции
.
Перепишем ее в более понятном виде:
.
Представим эту функцию как сложную функцию, состоящую из двух функций:
1) Функции , зависящей от переменной : ;
2) Функции , зависящей от переменной : .
Тогда исходная функция является сложной функцией, составленной из двух функций и :
.

Находим производную от функции по переменной x:
.
Находим производную от функции по переменной :
.
Применяем правило дифференцирования сложной функции.
.
Подставим :
(П2) .

Далее мы можем применить формулу для произведения синуса и косинуса:
.
Тогда
.

Производные высших порядков

Заметим, что производную от cos x первого порядка можно выразить через косинус следующим образом:
.

Найдем производную второго порядка, используя формулу производной сложной функции:

.
Здесь .

Заметим, что дифференцирование cos x приводит к увеличению его аргумента на . Тогда производная n-го порядка имеет вид:
(5) .

Более строго эту формулу можно доказать с помощью метода математической индукции. Доказательство для n-й производной синуса изложено на странице “Производная синуса”. Для n-й производной косинуса доказательство точно такое. Нужно только во всех формулах заменить sin на cos.

Автор: Олег Одинцов . Опубликовано: 05-03-2017

Источник

Сложная функция. Производная сложной функции

Раз ты зашел сюда, то уже, наверное, успел увидеть в учебнике эту формулу

Друг, не переживай! На самом деле все просто до безобразия. Ты обязательно все поймешь. Только одна просьба – прочитай статью не торопясь, старайся понять каждый шаг. Я писал максимально просто и наглядно, но вникнуть в идею всё равно надо. И обязательно реши задания из статьи.

Что такое сложная функция?

Представь, что ты переезжаешь в другую квартиру и поэтому собираешь вещи в большие коробки. Пусть надо собрать какие-нибудь мелкие предметы, например, школьные письменные принадлежности. Если просто скидать их в огромную коробку, то они затеряются среди других вещей. Чтобы этого избежать, ты сначала кладешь их, например, в пакет, который затем укладываешь в большую коробку, после чего ее запечатываешь. Этот «сложнейший» процесс представлен на схеме ниже:

Казалось бы, причем здесь математика? Да притом, что сложная функция формируется ТОЧНО ТАКИМ ЖЕ способом! Только «упаковываем» мы не тетради и ручки, а \(x\), при этом «пакетами» и «коробками» служат разные функции .

Например, возьмем x и «запакуем» его в функцию косинуса :

В результате получим, ясное дело, \(\cos⁡x\). Это наш «пакет с вещами». А теперь кладем его в «коробку» — запаковываем, например, в кубическую функцию.

Что получится в итоге? Да, верно, будет «пакет с вещами в коробке», то есть «косинус икса в кубе».

Получившаяся конструкция и есть сложная функция. Она отличается от простой тем, что к одному иксу применяется НЕСКОЛЬКО «воздействий» (упаковок) подряд и получается как бы «функция от функции» — «упаковка в упаковке».

В школьном курсе видов этих самых «упаковок» совсем мало, всего четыре :

Давай теперь «упакуем» икс сначала в показательную функцию с основанием 7, а потом в тригонометрическую функцию тангенс . Получим:

А теперь «упакуем» икс два раза в тригонометрические функции, сначала в синус , а потом в котангенс :

Напиши теперь сам функции, где икс:
— сначала «упаковывается» в косинус, а потом в показательную функцию с основанием \(3\);
— сначала в пятую степень, а затем в тангенс;
— сначала в логарифм по основанию \(4\) , затем в степень \(-2\).

Ответы на это задание посмотри в конце статьи.

А можем ли мы «упаковать» икс не два, а три раза? Да, без проблем! И четыре, и пять, и двадцать пять раз. Вот, например, функция, в которой икс «упакован» \(4\) раза:

Но такие формулы в школьной практике не встретятся (студентам повезло больше — у них может быть и посложнее☺).

«Распаковка» сложной функции

Посмотри на предыдущую функцию еще раз. Сможешь ли ты разобраться в последовательности «упаковки»? Во что икс запихнули сначала, во что потом и так далее до самого конца. То есть — какая функция вложена в какую? Возьми листок и запиши, как ты считаешь. Можно сделать это цепочкой со стрелками как мы писали выше или любым другим способом.

Теперь правильный ответ: сначала икс «упаковали» в \(4\)-ую степень, потом результат упаковали в синус, его в свою очередь поместили в логарифм по основанию \(2\), и в конце концов всю эту конструкцию засунули в степень пятерки.

То есть разматывать последовательность надо В ОБРАТНОМ ПОРЯДКЕ. И тут подсказка как это делать проще: сразу смотри на икс – от него и надо плясать. Давай разберем несколько примеров.

Например, вот такая функция: \(y=tg⁡(\log_2⁡x )\). Смотрим на икс – что с ним происходит сначала? Берется логарифм от него. А потом? Берется тангенс от результата. Вот и последовательность будет такая же:

Еще пример: \(y=\cos⁡<(x^3 )>\). Анализируем – сначала икс возвели в куб, а потом от результата взяли косинус. Значит, последовательность будет: \(x → x^3 → \cos⁡<(x^3 )>\). Обрати внимание, функция вроде бы похожа на самую первую (там, где с картинками). Но это совсем другая функция: здесь в кубе икс (то есть \(\cos⁡<(x·x·x)>)\), а там в кубе косинус \(x\) (то есть, \(\cos⁡x·\cos⁡x·\cos⁡x\)). Эта разница возникает из-за разных последовательностей «упаковки».

Последний пример (с важной информацией в нем): \(y=\sin⁡<(2x+5)>\). Понятно, что здесь сначала сделали арифметические действия с иксом, потом от результата взяли синус: \(x → 2x+5 → \sin⁡<(2x+5)>\). И это важный момент: несмотря на то, что арифметические действия функциями сами по себе не являются, здесь они тоже выступают как способ «упаковки». Давай немного углубимся в эту тонкость.

Как я уже говорил выше, в простых функциях икс «упаковывается» один раз, а в сложных — два и более. При этом любая комбинация простых функций (то есть их сумма, разность, умножение или деление) — тоже простая функция. Например, \(x^7\) – простая функция и \(ctg x\) — тоже. Значит и все их комбинации являются простыми функциями:

\(x^7+ ctg x\) — простая,
\(x^7· ctg x\) – простая,
\(\frac\) – простая и т.д.

Однако если к такой комбинации применить еще одну функцию – будет уже сложная функция, так как «упаковок» станет две. Смотри схему:

Хорошо, давай теперь сам. Напиши последовательность «заворачивания» функций:
\(y=cos<⁡(sin⁡x)>\)
\(y=5^\)
\(y=arctg⁡<11^x>\)
\(y=log_2⁡(1+x)\)
Ответы опять в конце статьи.

Внутренняя и внешняя функции

Зачем же нам нужно разбираться во вложенности функций? Что нам это дает? Дело в том, что без такого анализа мы не сможем надежно находить производные разобранных выше функций.

И для того, чтобы двигаться дальше, нам будут нужны еще два понятия: внутренняя и внешняя функции. Это очень простая вещь, более того, на самом деле мы их уже разобрали выше: если вспомнить нашу аналогию в самом начале, то внутренняя функция — это «пакет», а внешняя – это «коробка». Т.е. то, во что икс «заворачивают» сначала – это внутренняя функция, а то, во что «заворачивают» внутреннюю – уже внешняя. Ну, понятно почему – она ж снаружи, значит внешняя.

Вот в этом примере: \(y=tg⁡(log_2⁡x )\), функция \(\log_2⁡x\) – внутренняя, а — внешняя.

А в этом: \(y=\cos⁡<(x^3+2x+1)>\), \(x^3+2x+1\) — внутренняя, а — внешняя.

Выполни последнюю практику анализа сложных функций, и перейдем, наконец, к тому, ради чего всё затевалось — будем находить производные сложных функций:

Заполни пропуски в таблице:

Производная сложной функции

Браво нам, мы всё ж таки добрались до «босса» этой темы – собственно, производной сложной функции, а конкретно, до той самой ужасной формулы из начала статьи.☺

Производная сложной функции равна произведению производной внешней функции по неизменной внутренней на производную внутренней функции.

И сразу смотри схему разбора «по словам» чтобы понимать, что к чему относится:

Надеюсь, термины «производная» и «произведение» затруднений не вызывают. «Сложную функцию» — мы уже разобрали. Загвоздка в «производной внешней функции по неизменной внутренней». Что это такое?

Ответ: это обычная производная внешней функции, при которой изменяется только внешняя функция, а внутренняя остается такой же. Все равно непонятно? Хорошо, давай на примере.

Пусть у нас есть функция \(y=\sin⁡(x^3 )\). Понятно, что внутренняя функция здесь \(x^3\), а внешняя . Найдем теперь производную внешней по неизменной внутренней.

Из таблицы производных мы знаем, что производная синуса икс есть косинус икс (табличные значения надо знать наизусть!): \((<\sin⁡>)’=\cos⁡\).

Тогда производная внешней функции по неизменной внутренней для нашего случая будет \(\cos⁡(x^3)\). То есть, мы взяли ее как обычную производную синуса, а содержимое синуса (внутреннюю функцию) просто скопировали в полученную производную (косинус), ничего в ней не меняя.

Таким образом, на данный момент имеем:

Осталась «производная внутренней функции». Ну, это совсем легко – обычная производная от внутренней функции, при этом внешняя не влияет вообще никак. В нашем примере, производная от \(x^3\).

Все, теперь можем писать ответ:

Вот так. Давай еще один пример разберем.

Пусть надо найти производную функции \(y=(\sin⁡x )^3\).

Анализируем. Последовательность «заворачивания» у нас такая: \(x → \sin⁡x → (\sin⁡x )^3\). Значит, в данном примере внутренняя функция это \(\sin⁡x\), а внешняя .

Производная внешней по внутренней – это производная куба (содержимое куба при этом не меняется). Так как , а в нашем случае в куб «завернут» \(\sin⁡x\), то производная внешней будет \(3(\sin⁡x)^2\). То есть, имеем:

Ну, а производная внутренней – это просто производная синуса икс, то есть косинус икс.

Понятно?
Ладно, ладно, вот еще один пример с разбором. ☺

Пример. Найти производную сложной функции \(y=\ln(x^2-x)\).

Разбираем вложенность функций: \(x → x^2-x → \ln⁡(x^2-x)\).
Внутренняя: \(x^2-x\). Внешняя: .
Из таблицы производных знаем:.
То есть производная внешней по внутренней будет: \(\ln⁡(x^2-x)’=\) \(\frac<1>\) .
Производная внутренней: \((x^2-x)’= (x^2)’-(x)’=2x-1\).
В итоге, согласно большой и страшной формуле имеем:

Ну и напоследок можно немного «причесать» ответ, чтоб никто не докопался:

Что, еще примеров желаешь? Легко.

Пример. Найти производную сложной функции \(y=\sin⁡<(\cos⁡x)>\).
Вложенность функций: \(x → \cos⁡x → \sin⁡<(\cos⁡x)>\)
Внутренняя: \(\cos⁡x\) Внешняя:
Производная внешней по внутренней: \(\sin<⁡(\cos⁡x )>‘=\cos⁡<\cos⁡x>\)
Производная внутренней: \((\cos⁡x )’= -\sin⁡x\)
Имеем: \(y’=(\sin⁡<(\cos⁡x)>)’=\cos⁡<\cos⁡x>·(-\sin⁡x )=-\cos⁡ <\cos⁡x>·\sin⁡x\)

Замечание: Обрати внимание, что заменить запись \(\cos⁡<\cos⁡x>\) на \(\cos^2⁡x\) НЕЛЬЗЯ, так как \(\cos^2⁡x\) — это комбинация простых функций \(\cos^ 2⁡x=\cos⁡x·\cos⁡x\), а \(\cos⁡<\cos⁡x>\) – сложная функция: косинус от косинуса икс. Это абсолютно разные функции.

Еще пример с важным замечанием в нем.

Пример. Найти производную сложной функции \(y=\sqrt \)
Вложенность функций: \(x → x^6 → \sqrt\)
Внутренняя: \(x^6\) Внешняя:
Производная внешней по внутренней: \(\sqrt‘=\) \(\frac<1><2\sqrt>\)
Производная внутренней: \((x^6)’= 6x^5\)
Имеем: \((\sqrt)’=\) \(\frac<1><2\sqrt>\) \(·6x^5\)
И теперь упростим ответ. Вспомним свойство корня: \(\sqrt[b] =x^<\frac>\). Тогда \(\sqrt=x^<\frac<6><2>>=x^3\). С учетом этого получаем:

Всё. А теперь, собственно, важное замечание:

Давай рассмотрим пример, где эта идея нам сильно поможет.

Пример. Найти производную сложной функции \(y=\ln⁡(x^3)\).
Можно, конечно, рассмотреть вложенность функций: \(x → x^3 → \ln⁡(x^3 )\), разобрать на внутреннюю и внешнюю и так далее. Но можно вспомнить свойство логарифма: \(\log_a⁡=c·\log_a<⁡b>\). И тогда функция получается \(y=\ln⁡(x^3 )=3\ln⁡x\). Отлично! Берем производную:

Теперь задачка посложнее, для продвинутых. Решим пример с тройной вложенностью!

Пример. Найти производную сложной функции \(y=3^<\sin⁡(x^4+1)>\).
Вложенность функций: \(x → x^4+1 → \sin⁡(x^4+1) → 3^<\sin⁡(x^4+1)>\)
Внутренняя: \(x^4+1\) Средняя: Внешняя:
Сначала производная внешней по средней. Вспоминаем таблицу производных: . Значит, в нашем случае будет \(3^<\sin⁡(x^4+1)>·\ln⁡3\).
Хорошо, теперь производная средней по внутренней. По таблице: . Значит, мы получим, \(\sin⁡(x^4+1)’=\cos⁡(x^4+1)\).
И наконец, производная внутренней: \((x^4+1)’=(x^4 )’+(1)’=4x^3\).
Отлично. Теперь собираем все вместе, перемножая отдельные производные:

Ну, а что ты хотел, я сразу сказал – пример для продвинутых! А представь, что будет с четырехкратной или пятикратной вложенностью? ☺

Пример: Найти производную сложной функции \(y=tg⁡(7^x)\).

Разбираем вложенность функций: \(x \: → \:7^x \: → \:tg⁡(7^x)\).
Внутренняя: \(7^x\) Внешняя: \(tg⁡(7^x)\).
Ищем производную самой внешней функции, внутреннюю при этом не трогаем.
Из таблицы производных знаем: .
То есть, в нашем случае производная внешней по внутренней будет: \(\frac<1><\cos^2⁡(7^x)>\) .
Теперь ищем производную внутренней. Этой формулой мы уже пользовались, так что сразу пишем ответ: \((7^x)’=7^x·\ln⁡7\).
И перемножаем результаты:

Ну, теперь думаю всё понятно? И снова повторю – не пугайся сложных конструкций в ответах и промежуточных вычислениях. Они «на лицо ужасные», но зато добрые (в смысле простые) внутри. ☺ Пойми принцип и делай все последовательно.

Последний пример. Такие задания в разных вариациях весьма часто дают на контрольных и тестах. Он вроде как считается сложным. ☺ Хех, наивные учителя. ☺

Пример: Найти производную сложной функции \(y=\sqrt[3]<(x^5+2x-5)^2>\).

Казалось бы, опять у нас тройная вложенность функций:

Но давай снова воспользуемся свойством корня \(\sqrt[b] =x^<\frac>\) и преобразуем нашу функцию к виду:

Вот так. И теперь у нас вложенность двойная: \(x → x^5+2x-5 → (x^5+2x-5)^<\frac<2><3>>\)
При этом функция осталась той же! Удобное свойство, однако. Стоит его запомнить, да? ☺ Ладно, поехали дальше.
Внутренняя функция: \(x^5+2x-5\). Внешняя: .
Производная внешней по внутренней. По таблице производных общая формула производной степенной функции: . Получаем: . Тогда в нашем случае будет: \(\frac<2><3>(x^5+2x-5)^<-\frac<1><3>>\).
Производная внутренней: \((x^5+2x-5)’=5x^4+2\).
Общий результат: \(y ‘=(\sqrt[3]<(x^5+2x-5)^2>)’=((x^5+2x-5)^<\frac<2><3>> )’=\frac<2><3>(x^5+2x-5)^<-\frac<1><3>>·(5x^4+2)\).

В принципе, ответ найден. Но здесь можно сильно «причесать» результаты. Это может показаться сложным, но это не так, просто опять нагромождения символов большое и возникает такое ложное ощущение. На всякий случай помни: «не причесанный» ответ – тоже ответ. Поэтому если не поймешь дальнейших преобразований – не критично. Ладно, расческу в руки и вперед.
Вспоминаем свойство отрицательной степени \(a^<-n>=\) \(\frac<1>\) . Получаем:

Найти производные функций:

Ответы ко всем заданиям (вперемежку).

\(x → 1+x → \log_2⁡ <(1+x)>\)
\(x → 11^x → arctg⁡(11^x) \)
\(x → x^7 → 5^\)
\(x → \sin⁡x → \cos⁡(\sin⁡x)\)

Источник

Оцените статью
Юридический портал
Adblock
detector
Пример 2
Чему равна производная косинуса в квадрате? $ y = \cos^2 x $
Решение