Как посчитать сумму кубов

Сумма и разность кубов двух выражений

Формула суммы кубов

Возьмём формулу куба суммы (см. §23 данного справочника):

и найдём из неё сумму двух кубов:

$$ a^3+b^3 = (a+b)^3-3a^2 b-3ab^2 = (a+b)^3-3ab(a+b) = $$

Скобка $(a^2-ab+b^2 )$ называется неполным квадратом разности.

Полный квадрат разности – это $ (a^2-2ab+b^2 ) = (a-b)^2 $

Мы получили формулу для разложения суммы двух кубов на множители:

Сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности.

Формула разности кубов

Возьмём формулу куба разности (см. §23 данного справочника):

и найдём из неё разность двух кубов:

$$ a^3-b^3 = (a-b)^3+3a^2 b-3ab^2 = (a-b)^3+3ab(a-b) = $$

Скобка $(a^2+ab+b^2 )$ называется неполным квадратом суммы.

Полный квадрат суммы – это $(a^2+2ab+b^2 ) = (a+b)^2$

Мы получили формулу для разложения разности двух кубов на множители:

Разность кубов двух выражений равна произведению разности этих выражений на неполный квадрат их суммы.

Примеры

Пример 1. Разложите на множители:

в) $ 8a^3+1 = (2a)^3+1^3 = (2a+1)(4a^2-2a+1) $

г) $125-64y^3 = 5^3-(4y)^3 = (5-4y)(25+20y+16y^2 )$

Пример 2. Докажите что выражения $19^3-11^3$ кратно 8

Что и требовалось доказать.

Пример 3*. Дайте геометрическое объяснение формуле суммы кубов (аналогичная задача – см. Пример 5 §23 данного справочника).

Рассмотрим куб со стороной (a+b), в противоположные углы которого вписаны кубы со сторонами a и b.
Объемы кубов: $V_ = (a+b)^3, V_a = a^3, V_b = b^3$
Объём фигуры, закрашенной оранжевым: $V_ <ор>= a(a+b)^2-V_a = a(a^2+2ab+b^2 )-a^3$ $= 2a^2 b+ab^2$
Объём фигуры, закрашенной синим: $V_ <син>= b(a+b)^2-V_b = b(a^2+2ab+b^2 )-b^3$ $= a^2 b+2ab^2$

$$ (a+b)^3 = a^3+b^3+2a^2 b+ab^2+a^2 b+2ab^2 $$

$$ a^3+b^3 = (a+b)^3-3a^2 b-3ab^2 = (a+b)^3-3ab(a+b) = $$

Источник

Сумма кубов: формула и примеры

В данной публикации мы рассмотрим одну из формул сокращенного умножения – сумма кубов, с помощью которой выполняется раскладывание выражения на множители. Также разберем примеры решения задач для закрепления представленного материала.

Формула суммы кубов

Сумма кубов чисел/выражений равна произведению их суммы на неполный квадрат их разности.

a 3 + b 3 = (a + b)(a 2 – ab + b 2 )

Полный квадрат разности выглядит так: (a – b) 2 = a 2 – 2ab + b 2 . В нашем случае во второй скобке вместо удвоенного произведения стоит одинарное, поэтому выражение называется неполным.

Формула справедлива и справа-налево:

(a + b)(a 2 – ab + b 2 ) = a 3 + b 3

Примечание: a 3 + b 3 ≠ (a + b) 3

Доказательство формулы

Убедиться в правильности выражения можно, просто перемножив скобки, соблюдая правила арифметики при их раскрытии. Давайте так и сделаем:

(a + b)(a 2 – ab + b 2 ) = a 3 – a 2 b + ab 2 + a 2 b – ab 2 + b 3 = a 3 + b 3 .

Примеры задач

Задание 1
Разложите на множители выражение: 6 3 + (4x) 3 .

Решение
6 3 + (4x) 3 = (6 + 4x)(6 2 – 6 ⋅ 4x + (4x) 2 ) = (6 + 4x)(36 – 24x + 16x 2 )

Задание 2
Разложите выражение на произведение множителей: (7x) 3 + (3y 2 ) 3 .

Решение
(7x) 3 + (3y 2 ) 3 = (7x + 3y 2 )((7x) 2 – 7x ⋅ 3y 2 + (3y) 2 ) = (7x + 3y 2 )(49x 2 – 21xy 2 + 9y 2 )

Задание 3
Представьте выражение 64x 3 + 125 в виде суммы кубов и разложите его на множители.

Решение
64x 3 + 125 = (4x) 3 + 5 3 = (4x + 5)((4x) 2 – 4x ⋅ 5 + 5 2 ) = (4x + 5)(16x 2 – 20x + 25)

Источник

Калькулятор суммы двух кубов

Сумма двух кубов – это формула сокращенного умножения, позволяющие преобразовывать и упрощать математические выражения. Формулы сокращенного умножения постоянно используются при развязывании уравнений или решении алгебраических, тригонометрических, логарифмических и показательных выражений.

Историческая справка

Некоторые формулы сокращенного умножения были составлены еще в четвертом тысячелетии до нашей эры древними вавилонянами. Древние греки развили идеи вавилонских ученых и разработали целый набор подобных формул. Однако античные математики мыслили зримо – в то время числа визуализировались в геометрических фигурах или подручных предметах, например, камнях на счетной доске. Формулы суммы квадратов выводились не алгебраически, а геометрически, путем рассечения плоского квадрата на части. Расцвет математической науки пришелся на времена Лейбница, Ньютона и Эйлера и именно эти ученые внесли большой вклад в развитие формул сокращенного умножения.

Сумма двух кубов

Алгебраический куб – это возведение числа или неизвестного в третью степень. Следовательно, сумма двух кубов – это результат сложения двух чисел в третьей степени. Записывается это следующим образом:

Такой пример решается довольно просто, но при любых значениях a и b ответ можно представить в виде:

Следовательно, у нас есть тождество, которое работает при любых значениях переменных:

a 3 + b 3 = (a + b) × (a 2 − ab + b 2 ).

Доказать его можно простым раскрытием скобок и сокращением членов в правой части выражения. Данное тождество используется для сокращения выражений и быстрого поиска ответов или для разложения на множители.

Вряд ли подобные формулы понадобятся нам в реальной повседневности, но школьникам крайне важно знать формулы сокращенного умножения наизусть. Простыми словами формула звучит так: сумма двух кубов есть произведение суммы членов выражения на неполный квадрат их разности. Словосочетание «неполный» квадрат может вызвать у ребят сомнения. Полный квадрат разности – это еще одна формула сокращенного умножения, которая выглядит так:

В левой части у нас квадрат разности a – b, а справа – полный квадрат, разложенный на множители. Выражение a 2 – ab + b 2 для суммы двух кубов носит название неполного, так как в нем произведение ab без двойки. Данные тождества используются для упрощения громоздких выражений, а также для проверки полученных результатов сложения кубов или квадратов больших чисел.

Применение формулы на практике

Сумма двух кубов используется на практике для упрощения многочленов. Например, у нас есть сложный тригонометрический пример:

(sinx + cosy) × (sin 2 x − sinx × cosy + cos 2 y)

Решать этот пример при помощи тригонометрического аппарата было бы довольно сложно, особенно для школьника, незнакомого со свойствами синусов и косинусов. Однако мы можем применить правило суммы двух кубов, ведь данный пример полностью повторяет разложение на множители выражения a 2 + b 2 , только здесь a = sinx, b = cosy. В итоге громоздкое тригонометрическое выражение превратится в компактную запись:

Теперь давайте применим эту формулу при счете. Большинство людей практически наизусть знает квадраты натуральных чисел до 15, а те, кто постоянно занимается арифметикой, знают куда больше квадратов. С кубами все обстоит сложнее, поэтому если вам требуется посчитать сумму двух кубов, куда проще использовать формулу разложения на множители. Например, давайте посчитаем выражение:

Сходу вычислить кубы этих чисел непросто, если вы не ученик математического кружка. Давайте используем формулу:

15 3 + 12 3 = (15 + 12) × (15 2 − 15×12 + 12 2 )

Квадраты 12 и 15 многие помнят наизусть – это 144 и 225 соответственно. Осталось провести небольшие вычисления:

15 3 + 12 3 = 27 × (225 − 180 + 144) = 27 × 189 = 5 103

Проверим вычисления на калькуляторе. Число 15 в кубе дает 3 375, а 12 — 1 728. Суммируем их и получим 3 375 + 1 728 = 5 103. Все верно, но оперировать меньшими числами гораздо удобнее.

Мы представляем вам программу, которая считает сумму двух кубов с иллюстрацией промежуточных выкладок. Для расчета вам понадобится ввести значения в соответствующие ячейки и сделать один клик мышкой. Используя калькулятор, вы получите не только мгновенный и правильный ответ, но и весь процесс решения. Такая программа пригодится школьникам, которые хотят проверить свои выкладки, а также тем взрослым, кто хочет освежить в памяти школьный курс алгебры.

Заключение

Формулы сокращенного умножения – важная тема школьной алгебры, которая пригодится при решении громоздких выражений на любую тему. Это своеобразный фундамент, на котором строятся решения тригонометрических, показательных, логарифмических и даже интегральных и дифференциальных исчислений. Наш калькулятор может вам освоить применение формулы суммы двух кубов или освежить в памяти школьный материал.

Источник

Алгебра. 7 класс

Конспект урока

Сумма кубов. Разность кубов

Перечень вопросов, рассматриваемых в теме:

  • Формулы сокращённого умножения.
  • Сумма кубов, разность кубов.
  • Разложение многочлена на множители.
  • Тождественные преобразования.
  • Вычисление значения числовых выражений.

Формулы сокращённого умножения.

a 3 + b 3 = (a + b)(a 2 – ab + b 2 )

a 3 – b 3 = (a – b)(a 2 + ab + b 2 )

  • упрощение умножения многочленов;
  • разложение многочлена на множители;
  • вычисление значения числового выражения;
  • тождественные преобразования.

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Применив правило умножения многочленов, и приведя подобные члены, получим:

(a + b)(a 2 – ab + b 2 ) = a 3 – a 2 b + ab 2 + ba 2 – ab 2 +b 3 = a 3 + b 3

a 3 + b 3 = (a + b)(a 2 – ab + b 2 )

Равенство называют формулой суммы кубов.

Читается так: «сумма кубов двух чисел равна произведению суммы этих чисел и неполного квадрата их разности».

Аналогично докажем формулу разности кубов.

(a – b)(a 2 + ab + b 2 ) = a 3 + a 2 b + ab 2 – ba 2 – ab 2 – b 3 = a 3 – b 3

Читается так: «разность кубов двух чисел равна произведению разности этих чисел и неполного квадрата их суммы».

Выражения (a 2 + ab + b 2 ) и (a 2 – ab + b 2 ) называют неполным квадратом суммы или разности.

Формула задаёт разложение многочленов:

a 3 + b 3 и a 3 – b 3 на два множителя:

(a + b)(a 2 – a b+ b 2 ) и (a – b)(a 2 + ab + b 2 ).

Формулы суммы и разности кубов используют для упрощения вычислений.

Разбор решения заданий тренировочного модуля.

Выполните умножение многочленов:

  1. ( x + 3)(x 2 –3x +9) = x 3 + 3 3 = x 3 + 27.
  2. (2x – 3y)(4x 2 +6xy + 9y 2 ) = (2x) 3 – (3y) 3 = 8x 3 –27y 3 .

Разложите многочлен на множители:

  1. x 3 – 8 y 3 = x 3 – (2y) 3 = (x – 2y) (x 2 +2xy + 4y 2 )
  2. 64 a 3 – 27c 3 = (4a) 3 – (3c) 3 = (4a – 3c)(16a 2 +12 ac + 9c 2 ).

x 3 + 2 3 – x(x 2 – 9) = x 3 + 8 – x 3 + 9x = 8 + 9x.

Доказать, что выражение 123 3 + 27 3 кратно 50.

a 3 + b 3 = (a + b)(a 2 – ab + b 2 ),

получим: (123 + 27)(123 2 123 · 27 + 27 2 ) =150 · (123 2 123 · 27 + 27 2 ).

Произведение делится на 50, так как первый множитель делится на 50: (150 : 50 = 3). Нет необходимости считать значение выражения в скобках. Утверждение доказано.

Источник

Куб суммы: формула и примеры

В данной публикации мы рассмотрим одну из формул сокращенного умножения, позволяющую разложить куб суммы на множители, а также, подробно разберем пример решения задачи.

Формула куба суммы

Куб суммы слагаемых a и b равняется кубу a плюс утроенное произведение квадрата a на b плюс утроенное произведение квадрата b на a плюс куб b .

(a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3

Формула равносильна и в обратном порядке:

a 3 + 3a 2 b + 3ab 2 + b 3 = (a + b) 3

Доказательство формулы

Куб числа/выражения – это его возведение в третью степень. Давайте представим наше выражение в виде куба:
(a + b) 3 = (a + b)(a + b)(a + b) .

Перемножаем скобки с учетом арифметических правил:
(a + b)(a + b)(a + b) = (a + b)(a + b) 2 = (a + b)(a 2 + 2ab + b 2 ) = a 3 + 2a 2 b + ab 2 + a 2 b + 2ab 2 + b 3 = a 3 + 3a 2 b + 3ab 2 + b 3 .

Примечание: при раскрытии скобок использовалась формула квадрата суммы:
(a + b) 2 = a 2 + 2ab + b 2 .

Пример

Чему равен куб суммы (5x + 7y) 3 ?

Решение
Используем формулу сокращенного умножения:
(5x + 7y) 3 = (5x) 3 + 3 ⋅ (5x) 2 ⋅ 7y + 3 ⋅ 5x ⋅ (7y) 2 + (7y) 3 = 125x 3 + 525x 2 y + 735xy 2 + 343y 3

Проверка
Выполним перемножение трех одинаковых скобок:
(5x + 7y) 3 = (5x + 7y)(5x + 7y)(5x + 7y) = (5x + 7y)(5x + 7y) 2 = (5x + 7y)(25x 2 + 70xy + 49y 2 ) = 125x 3 + 350x 2 y + 245xy 2 + 175x 2 y + 490xy 2 + 343y 3 = 125x 3 + 525x 2 y + 735xy 2 + 343y 3

Источник

Калькулятор расчета суммы квадратов/кубов последовательных чисел

Последовательные числа — это члены натурального ряда, идущие друг за другом. Натуральные числа — это числа, которые мы используем для счета предметов. 1, 2, 3, 4 — последовательные элементы натурального ряда.

Числовые последовательности

Последовательность — упорядоченный набор чисел, который образуется по определенному закону. Существует множество самых разных числовых наборов, самым простым и понятным из которых считается натуральный ряд. Первые числа, которые дети учат в начальных классах, это члены натуральной последовательности:

Буквой n обозначается общий член последовательность, а для натурального ряда n считается и законом образования ряда. Закон последовательности — это форма записи принципа, по которому образуются члены ряда. Простой закон n означает, что номер элемента числового набора соответствует его значению. Первый элемент равен 1, второй — 2, десятый — 10. Для последовательности четных чисел, которая задается законом 2n, первый элемент набора будет равен 2, второй — 4, а десятый — 20. Набор нечетных чисел задается формулой 2n – 1, и в этом случай первый член ряда будет равен 1, второй — 3, десятый — 19.

Работа с числовыми наборами и законами их образования позволила математикам вывести формулы для определения сумм последовательных чисел натурального ряда.

Сложение последовательных чисел

Сумма первых n последовательных элементов натурального набора выражается следующей формулой:

Данная формула позволяет вычислить сумму натурального ряда от 1 до n. При сложении последовательных чисел не с первого элемента существует несколько хитростей, среди которых:

  • для суммирования четырех последовательных чисел достаточно умножить наибольшее число на 4 и из результата отнять 6;
  • для сложения любых пяти последовательных чисел достаточно умножить третий элемент набора на 5;
  • для вычисления суммы шести последовательных чисел следует умножить наибольшее число на 6 и из результата вычесть 15.
  • Сумма ряда от 1 до 10 вычисляется по формуле и равна 0,5 × 10 × 11 = 55.
  • Сумма ряда 5 + 6 + 7 + 8 + 9 определяется как 7 × 5 = 35.
  • Сумма ряда 57 + 58 + 59 + 60 вычисляется как 60 × 4 — 6 = 234.
  • Сумма ряда 21 + 22 + 23 + 24 + 25 + 26 определяется как 26 × 6 — 15 = 141.

Правильность расчетов при помощи хитростей вы можете проверить на калькуляторе.

Сложение квадратов последовательных чисел

Более сложная задача состоит в суммирования последовательных чисел, возведенных в квадрат. Начало набора квадратов последовательных чисел выглядит как:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

Такой набор чисел задается простой формулой n 2 . Для определения суммы первых n членов квадратного ряда используется формула:

Для подсчета суммы первых пяти членов квадратной ряда 1 + 4 + 9 + 16 + 25, то есть n = 5, расчеты будут выглядеть как:

Используя данную формулу легко подсчитать общую сумму квадратов первых n квадратов.

Сложение кубов последовательных чисел

Ряд последовательных чисел можно модифицировать и представить его в виде последовательности кубов. Это означает, что каждый член числового набора 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 . n возводится в куб, и в результате мы получаем последовательность кубов:

1, 8, 27, 64, 125, 216, 343, 512, 729, 1000 . n 3

Для нахождения суммы первых n членов кубического ряда используется выражение:

Например, для нахождения значения ряда при n = 5, то есть выражения 1 + 8 + 27 + 64 + 125, расчеты будут выглядеть следующим образом:

При помощи этой простой формулы легко вычислить сумму кубов для сколь угодно большого n.

Наш калькулятор использует выше приведенные формулы для вычисления сумм квадратов или кубов натурального ряда для его первых n членов. Для расчетов вам необходимо выбрать тип калькулятора «Квадраты» или «Кубы», после чего ввести в ячейку количество элементов ряда. В теоретической части мы рассматривали сумму ряда из 5 членов, а при помощи онлайн-калькулятора легко рассчитать большие суммы.

Примеры использования

Рассчитаем сумму квадратов для 250 членов натурального ряда, то есть решим выражение 1 + 4 + 9 + … + 62 500. Для этого введем в форму калькулятора число 250 и получим мгновенный результат, равный 5 239 625.

Теперь вычислим сумму кубов для 250 членов натурального ряда, что будет равнозначно решению выражения 1 + 8 + 27 + … + 15 625 000. Изменим тип калькулятора и выберем «Куб», после чего введем в ячейку программу число 250. Наш результат не заставит себя ждать, и мы увидим 984 390 625.

Заключение

Для подсчета конечных сумм последовательных рядов используются простые формулы, которые, однако, не всегда удобно применять при повседневных расчетах. Используйте нашу программу для мгновенного подсчета значения квадратных и кубических рядов.

Источник

Оцените статью
Юридический портал
Adblock
detector