Изометрическая проекция куба с окружностями вписанными в грани куба

Изометрическая проекция куба с окружностями вписанными в грани куба

§ 14. Построение аксонометрических проекций окружности

Рассмотрите рис. 92. На нем дана фронтальная диметрическая проекция куба с вписанными в его грани окружностями.


Рис. 92. Фронтальные диметрические проекции окружностей, вписанных в грани куба

Окружности, расположенные на плоскостях, перпендикулярных к осям х и z, изображаются эллипсами. Передняя грань куба, перпендикулярная к оси у, проецируется без искажения, и окружность, расположенная на ней, изображается без искажения, т. е. описывается циркулем. Поэтому фронтальная диметрическая проекция удобна для изображения предметов с криволинейными очертаниями, подооных представленными на рис. 93.


Рис. 93. Фронтальные диметрические проекции деталей

Построение фронтальной диметрической проекции плоской детали с цилиндрическим отверстием. Фронтальную диметрическую проекцию плоской детали с цилиндрическим отверстием выполняют следующим образом.

1. Строят очертания передней грани детали, пользуясь циркулем (рис. 94, а).

2. Через центры окружности и дуг параллельно оси у проводят прямые, на которых откладывают половину толщины детали. Получают центры окружности и дуг, расположенных на задней поверхности детали (рис. 94, б). Из этих центров проводят окружность и дуги, радиусы которых должны быть равны радиусам окружности и дуг передней грани.


Рис. 94. Построение фронтальной диметрической проекции детали с цилиндрическими элементами

3. Проводят касательные к дугам. Удаляют лишние линии и обводят видимый контур (рис. 94, в).

Изометрические проекции окружностей. Квадрат в изометрической проекции проецируется в ромб. Окружности, вписанные в квадраты, например, расположенные на гранях куба (рис. 95), в изометрической проекции изображаются эллипсами. На практике эллипсы заменяют овалами, которые вычерчивают четырьмя дугами окружностей.


Рис. 95. Изометрические проекции окружностей, вписанных в грани куба

Построение овала, вписанного в ромб.

1. Строят ромб со стороной, равной диаметру изображаемой окружности (рис. 96, а). Для этого через точку О проводят изометрические оси х и у и на них от точки О откладывают отрезки, равные радиусу изображаемой окружности. Через точки a, w, с и d проводят прямые, параллельные осям; получают ромб. Большая ось овала располагается на большой диагонали ромба.

2. Вписывают в ромб овал. Для этого из вершин тупых углов (точек А и В) описывают дуги радиусом R, равным расстоянию от вершины тупого угла (точек А и В) до точек a, b или с, d соответственно. Через точки В и а, В и b проводят прямые (рис. 96, б); пересечение этих прямых с большей диагональю ромба дает точки С и D, которые будут центрами малых дуг; радиус R1 малых дуг равен Са (Db). Дугами этого радиуса сопрягают большие дуги овала. Так строят овал, лежащий в плоскости, перпендикулярной к оси z (овал 1 на рис. 95). Овалы, находящиеся в плоскостях, перпендикулярных к осям х (овал 3) и у (овал 2), строят так же, как овал 1., только построение овала 3 ведут на осях у и z (рис. 97, а), а овала 2 (см. рис. 95) — на осях х и z (рис. 97, б).


Рис. 96. Построение овала в плоскости, перпендикулярной оси z


Рис. 97. Построение овала в плоскостях, перпендикулярных осям х и у

Построение изометрической проекции детали с цилиндрическим отверстием.

Как применить рассмотренные построения на практике?

Дана изометрическая проекция детали (рис. 98, а). Нужно изобразить сквозное цилиндрическое отверстие, просверленное перпендикулярно передней грани.

Построения выполняет следующим образом.

1. Находят положение центра отверстия на передней грани детали. Через найденный центр проводят изометрические оси. (Для определения их направления удобно воспользоваться изображением куба на рис. 95.) На осях от центра откладывают отрезки, равные радиусу изображаемой окружности (рис. 98, а).

2. Строят ромб, сторона которого равна диаметру изображаемой окружности; проводят большую диагональ ромба (рис. 98, б).

3. Описывают большие дуги овала; находят центры для малых дуг (рис. 98, в).

4. Проводят малые дуги (рис. 98, г).

5. Строят такой же овал на задней грани детали и проводят касательные к обоим овалам (рис. 98, д).


Рис. 98. Построение изометрической проекции летали с цилиндрическим отверстием

Ответьте на вопросы

1. Какими фигурами изображаются во фронтальной диме-трической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х и у?

2. Искажается ли во фронтальной диметрической проекции окружность, если ее плоскость перпендикулярна оси у?

3. При изображении каких деталей удобно применять фронтальную диметрическую проекцию ?

4. Какими фигурами изображаются в изометрической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х, у, z?

5. Какими фигурами в практике заменяют эллипсы, изображающие окружности в изометрической проекции?

6. Из каких элементов состоит овал?

7. Чему равны диаметры окружностей, изображенных овалами, вписанными в ромбы на рис. 95, если стороны этих ромбов равны 40 мм?

Задания к § 13 и 14

Упражнение 42

На рис. 99 проведены оси для построения трех ромбов, изображающих квадраты в изометрической проекции. Рассмотрите рис. 95 и запишите, на какой грани куба — верхней, правой боковой или левой боковой будет расположен каждый ромб, построенный на осях, данных на рис. 99. Какой оси (х, у или z) будет перпендикулярна плоскость каждого ромба?


Рис. 99. Задание для упражнений

Упражнение 43

Запишите, какой оси (х, у или z) перпендикулярны плоскости овала на рис. 100. В какой аксонометрической проекции даны здесь окружности?


Рис. 100. Задание для упражнений

Упражнение 44

В каких аксонометрических проекциях даны окружности на рис. 101? Какой оси перпендикулярна плоскость каждой из них?


Рис. 101. Задание для упражнений

Упражнение 45

Запишите, в каких аксонометрических проекциях даны геометрические тела на рис. 102.

Каким осям (х, у или z) параллельна высота каждого из них?


Рис. 102. Геометрические тела для задания для упраждений

Упражнение 46

Постройте изометрическую проекцию куба, сторона которого равна 70 мм. Впишите в три грани куба овалы — изометрические проекции окружностей (см. рис. 95).

Источник

Как написать отчет по практике на отлично

Окружность в прямоугольной изометрии

Окружности, вписанные в грани куба ( рис 9.6а ), проецируются в эллипсы, В прямоугольной изометрии все три эллипса одинаковы по форме, равны друг другу, но расположены различно (рис 9.6.б) . Их малые оси всегда располагаются по направлению отсутствующей в данной плоскости аксонометрической оси, а большая ось к ней перпендикулярна.

Существует несколько способов построения окружности в

Первый способ. Строят ромб со стороной, равной D окружности. Точки А и В — центры больших дуг радиуса R, Точки С и Е — центры малых дуг радиуса г. Точки 1, 2, 3. 4 — точки сопряжения дуг (рис 9.7а ).

Второй способ. Проводят две окружности, одна — диаметром, равным большой оси овала (АВ = 1,22 D), вторая — диаметром, равным малой оси (СЕ = 0,71 D). Точки Oi и Oi — центры больших дуг овала, а точки Оз и 04 — центры малых дуг. Точки 1, 2, 3, 4 — точки сопряжения дуг (|рис 9.7i, б).

На рис 9-8 показан графический способ определения большой и малой осей изометрического эллипса. Для определения малой оси эллипса соединяем точки 1 и 2. Отрезок 1 — 2 — малая ось эллипса. Из точек 1 и 2, как из центров, описываем дуги радиусом 1 — 2 до их взаимного пересечения. Отрезок 3 — 4 — большая ось эллипса.

9.4.2. Окружность в прямоугольной диметрии

В прямоугольной диметрической проекции так же, как в прямоугольной изометрии, малые оси всех трех эллипсов расположены по направлению той аксонометрической оси, которая отсутствует в плоскости, содержащей эллипс.

На рис.9.9 показаны эллипсы, принадлежащие отдельнмм координатным плоскостям, и указаны размеры их осей. У эллипса, расположенного в плоскости x’0’z’, большая ось равна 1,06 D., малая — 0,94 D.

Эллипсы, принадлежащие координатным плоскостям x ¢ О ¢ y ¢ и z’Oy’ по величине и форме одинаковы. Большие оси этих эллипсов равны 1,06 D, малые — 0,35 D.

На риc.9.9 дано построение диметрического овала для окружности диаметра D, расположенной в плоскости x’O ¢ z ¢

Проводят оси диметрической проекции x ¢ y ¢ z ¢ , затем через точку О проводят прямую, перпендикулярную к оси у’, и на ней откладывают большую ось эллипса АВ. Малую ось эллипса CD откладывают на оси у! Отрезки ОМ = ON = OK = ОЕ равны радиусу данной окружности. Точки М, N, К и Е будут точками сопряжения дуг овала. Точки Oi, Oi, Оз и 04 будут центрами дуг радиусов окружностей, из которых состоит овал.

На рис.9.10 приведено построение диметрических овалов, заменяющих эллипсы, для окружностей, расположенных в плоскостях Н и W, Эти овалы одинаковы по форме и величине. Малая ось имеет направление той аксонометрической оси, которая отсутствует в плоскости, содержащей эллипс, большая ось к ней перпендикулярна.

Последовательность построения такая (рис 9.11, а): от центра О’ на продолжении малой оси эллипса откладываем размер 1,06 D (величину большой оси). Получаем точку O1- центр нижней дуги радиуса R, Из точки О2 этим же радиусом проводим верхнюю дугу овала. От точек А и В откладываем размеры малой оси, уменьшенной в четыре раза, т.е. EF / 4. Из полученных центров Оз, О4 проводим дуги радиуса R1= O’E/2. Точки сопряжения 5 и 6 находим, соединяя прямой точки O1 и О4(О2 и О4) и

продолжая эту прямую до пересечения с дугой.

Построение овала в плоскости W (рис 9.11 б) аналогично построению овала в плоскости Н.

9.4.3. Окружность в косоугольной фронтальной диметрии

На рис.9.12 изображен куб, выполненный в косоугольной фронтальной диметрии. В каждую грань куба вписана окружность. Одна из них, расположенная в плоскости V, проецируется без искажения; две другие — в виде эллипсов, где большая ось равна 1,07D, a малая — 0,33 D. Большие оси эллипсов перпендикулярны недостающим аксонометрическим осям плоскости, в которой они расположены.

Способ построения этих овалов такой же, как в прямоугольной диметрии.

9.5. Примеры построения стандартных аксонометрий

Аксонометрическую проекцию точки А строят по ее координатам ха, уa, za. На рис 9.13, а даны две проекции осей координат и точки. Чтобы построить изометрию точки, от точки О’ на оси х’ откладывают координату ха ( рис 9.13 б). Через полученную точку проводят прямую, параллельную оси у’ и откладывают на ней координату уА Отмечают вторичную проекцию А ¢ 1 точки А, затем откладывают координату za, параллельно оси z ¢ . Полученная точка А — изометрическая проекция точки. Итак, любую аксонометрическую проекцию точки можно получить, построив в аксонометрии трехзвенную координатную ломаную линию, определяющую положение этой точки относительно начала координат.

Аксонометрические проекции прямых, кривых строят по координатам их точек. На рис 9.14 показано построение отрезка АВ, на рис 9.15 показано построение плоской кривой, а на рис 9.16 — пространственной кривой в изометрической проекции

Построение шестигранной призмы по данному чертежу начинают с плоской фигуры основания (рис 9.171). Основание призмы строят по координатам его точек. На изометрической оси г’ откладывают высоту Н, проводят линии, параллельные осям х ‘и у.’ Отмечают на линии, параллельной оси х,’ положение точек 1 и 4.

Для построения точки 2 определяют координаты этой точки на чертеже — х2; и у2; и, откладывая эти координаты на аксонометрическом изображении, строят точку 2. Таким же образом строят точки 3, 5 и 6.

Построенные точки верхнего основания соединяют между собой. Боковые ребра призмы являются горизонтально — проецирующими

прямыми, поэтому на горизонтальную плоскость проекции Н они проецируются в виде точек. Из точки 1 проводят ребро до пересечения с осью х! затем — ребра из точек 2, 3, 6. Нижнее основание призмы проводят параллельно верхнему. Невидимые ребра призмы следует проводить штриховой линией.

Построение аксонометрической проекции прямого кругового конуса начинают с его основания (рис 9.18).

Аксонометрической проекцией основания будет эллипс, расположенный в плоскости Н. Далее из центра эллипса откладывают высоту конуса. Полученную точку — вершину конуса — соединяют двумя касательными с основанием. На | рис9.18а дано изображение конуса в прямоугольной изометрии, на рис.9.18 б — в прямоугольной диметр ии.

Прямоугольной аксонометрической проекцией сферы диаметром D является окружность, диаметр которой равен 1,22 D (изометрия) или 1,06 D (диметрия) по приведенным коэффициентам искажения. На рис.9.19 а изображена прямоугольная изометрия сферы с вырезом одной восьмой его части. На рис.9-19, б — прямоугольная диметрия сферы с вырезом одной восьмой его части. Три эллипса на изображении — проекции сечения шара координатными плоскостями.

На рис.9.20 изображена прямоугольная диметрия части тора. Сначала строят ось поверхности в виде овала, затем радиусом образующей сферы проводят окружности, равномерно располагая их по направляющей.

Для изображения кольца проводят плавную касательную ко всем окружностям. Чтобы спроецировать любую поверхность вращения (рис.9.21) вписывается в неё произвольные сферы, при этом 0 ¢ 1 ¢ =0 ² 1 ² и т.д. Плавная касательная ко всем окружностям представляет собой контур изображения .При построении ксонометрии по приведенным показателям искажения радиусы вписываемых сфер увеличиваются в изометрии в 1,22 раза, в диметрии — в 1,06

Источник

Оцените статью
Юридический портал
Adblock
detector