Дан куб указать совокупности векторов которые образуют базис в пространстве

Онлайн калькулятор. Проверить образуют ли вектора базис.

Этот онлайн калькулятор позволит вам очень просто проверить образует ли заданый набор векторов базис (проверить линейную независимость векторов).

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на определение образует ли заданый набор векторов базис и закрепить пройденый материал.

Калькулятор для проверки образуют ли вектора базис (проверить линейную независимость векторов)

Выберите размерность пространства

Количество координат в векторе:

Введите значение векторов:

Инструкция использования калькулятора для проверки образуют ли вектора базис (проверки линейной независимости векторов)

  • Для того чтобы проверить образуют ли вектора базис (проверить линейную независимость векторов) онлайн:
  • выберите необходимую вам размерность пространства;
  • введите значение векторов;
  • Нажмите кнопку «Проверить образуют ли вектора базис» и вы получите детальное решение задачи.

Ввод данных в калькулятор для проверки образуют ли вектора базис (проверить линейную независимость векторов)

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора проверки образуют ли вектора базис (проверить линейную независимость векторов)

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Как найти координаты вектора в базисе

Решение:
Записываем матрицу перехода А:

и находим ее определитель
<>0
Видим, что ранг матрицы С равен трем. Из теоремы о базисном миноре векторы f1 , f2 , f3 линейно независимы, а поэтому могут быть приняты в качестве базиса пространства R 3 .
Находим обратную матрицу А -1 .
Транспонированная матрица:

Находим координаты вектора х относительно нового базиса.

Пример №1 . Даны векторы a<1;2;1>, b<2;-2;1>, c <1;-2;0>и d <0;3;1>. Установить, что векторы a , b , c образуют базис, и найти координаты вектора d в этом базисе.
Решение:
Соотношение, записанное для векторов d = αa + βb + γc, справедливо для каждой из проекций:
α*1 + β*2 + γ*1 = 0
α*2 — β*2 — γ*2 = 3
α*1 + β*1 + γ0 = 1 т.е. получена алгебраическая система трёх уравнений с тремя неизвестными. Решение системы удобнее вычислять методом Крамера или методом обратной матрицы:
α = 1/2; β = 1/2; γ = -3/2
следовательно, и вектор d имеет разложение в базисе a, b, c :
d = 1/2a + 1/2b — 3/2c

Пример №2 . Даны векторы . Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора в этом базисе:

Пример №3 . Даны два линейных преобразования:
х’1 = a11x1 + a12x2 + a13x3, х»1 = b11x’1 + b12x’2 + b13x’3,
х’2 = a21x1 + a22x2 + a23x3, х»2 = b21x’1 + b22x’2 + b23x’3,
х’3 = a31x1 + a32x2 + a33x3, х»3 = b31x’1 + b32x’2 + b33x’3,
Средствами матричного исчисления найти преобразование, выражающее х»1, x»2, x»3 через х1, х2, х3.
х’1 = 4x1 + 3x2 + 5x3, х»1 = — x’1 + 3x’2 — 2x’3,
х’2 = 6x1 + 7x2 + x3, х»2 = — 4x’1 + x’2 + 2x’3,
х’3 = 9x1 + x2 + 8x3, х»3 = 3x’1 — 4x’2 + 5x’3,
Решение. Используя калькулятор, получаем:
Обозначим:

A =
4 3 5
6 7 1
9 1 8

B =
-1 3 -2
-4 1 2
3 -4 5

Тогда матричное уравнение запишется в виде: A·X = B.
Вычислим определитель матрицы А:
∆ = 4*(7*8 — 1*1) — 6*(3*8 — 1*5) + 9*(3*1 — 7*5) = -182
Определитель матрицы А равен detA=-182
Так как A невырожденная матрица, то существует обратная матрица A -1 . Умножим слева обе части уравнения на A -1 : A -1 ·A·X = A -1 ·B, тогда получим E·X = A -1 ·B, или X = A -1 ·B.
Найдем обратную матрицу A -1 .

A -1 = -1/182
55 -19 -32
-39 -13 26
-57 23 10

Матрицу Х ищем по формуле:

X = A -1 ·B = -1/182
55 -19 -32
-39 -13 26
-57 23 10
*
-1 3 -2
-4 1 2
3 -4 5
=
75 /182 -1 46 /91 1 9 /13
-13 /14 1 2 /7 -1
5 /182 1 3 /91 -1 2 /13

Пример №4 . В декартовой прямой системе координат даны вершины пирамиды A(3,0,-1), B(-1,-2,-4), C(-1,2,4), D(7,-3,1). Найдите:
а) длину ребра AB;
б) косинус угла между векторами AB и AC ;
в) уравнение ребра AB;
г) уравнение грани ABC;
д) уравнение высоты, опущенной из вершины D на грань ABC;
е) координаты векторов e 1= AB , e 2= AC , e 3= AD и докажите, что они образуют линейную независимую систему;
ж) координаты вектора MN , где M и N – середины ребер AD и DC соответственно;
з) разложение вектора MN по базису ( e 1, e 2, e 3)

Решение. Пункты (а-д) решаются через онлайн калькулятор.

Задание 1 . Разложить вектор d =(8;-5) по векторам a =(1;-2) и b =(2;3).
Решение. Векторы a и b образуют базис на плоскости, так как они не коллинеарны (, то есть соответствующие координаты этих векторов не пропорциональны).
Следовательно, вектор d = α a +β b , где α и β – коэффициенты, которые надо найти.
Таким образом, имеем равенство
8i-5j=α(i-2j)+β(2i+3j)=(α+2β)i+ (-2α+3β)j.
В координатной форме это равенство примет вид
Решим полученную систему уравнений.

Источник

35. Базис векторов пространства

Рассмотрим множество V3 всех векторов пространства.

Теорема 5. Любая упорядоченная система трех некомпланарных векторов A, B, С V3 Образуют базис векторного пространства V3.

Доказательство. Пусть A, B, С Некомпланарные векторы. По следствию 1 теоремы 8 они образует линейно независимую систему. Пусть D V3. Отложим векторы A, B, С и D от точки O: A = , B = , С = , D = (см. рис. 18). Проведем через точку D прямую L, параллельную прямой OD. Так как векторы A, B, С некомпланарны, то прямая L пересекает плоскость OAB в точке E. Тогда =+. Так как векторы лежит в плоскости OAB, а вектора образуют базис векторов этой плоскости, то по теореме 7 = a a + b b, где a, b R. Так как вектор коллинеарен вектору C, То по теореме 8 § 1 он линейно выражается через вектор С: = g с. Поэтому D = = a a + b b + g с и по определению 1 вектора A, B, С образует базис пространства V3.

По теореме 5 базис векторов на пространстве образуют любые три некомпланарные вектора, поэтому любой вектор в пространстве имеет три координаты. Тогда справедливо следующее утверждение.

Следствие 1. Вектора A = (a1, b1, g1), B = (a2, b2, g2), С = (a3, b3, g3) Образуют базис векторов пространства тогда и только тогда, когда

= 0.

Теорема 6. Любые четыре вектора A, B, С, D В пространстве линейно зависимы.

Доказательство. Если векторы A, B, С Компланарны, то по теоремы 5 они линейно зависимы. Тогда по свойству линейной зависимости по свойству 4 § 3 вектора A, B, С, D линейно зависимы. Если вектора A, B, С некомпланарны, то по теореме 5 они образуют базис векторов пространства. Тогда вектор D линейная комбинация векторов A, B, С и по свойству линейной зависимости векторы A, B, С, D линейно зависимы.

Задача 1. Доказать что векторы A = (1, 2, 0), B = (3, 2, 1), С = (0, 1, -1) образуют базис в пространстве и выразить вектор D = (5, 5, 2) через векторы базиса.

,

Для того, чтобы найти координаты вектора D в базисе A, B, С составим векторное уравнение

И запишем его в координатной форме:

Решаем эту систему линейных уравнений: X = 2, Y = 2, Z = -1 и находим D = 2A + BС.

Источник

Доказать, что 3 вектора образуют базис трёхмерного пространства и найти координаты 4-го вектора в данном базисе

Даны векторы . Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора в этом базисе.

Решение: Сначала разбираемся с условием. По условию даны четыре вектора, и, как видите, у них уже есть координаты в некотором базисе. Какой это базис – нас не интересует. А интересует следующая вещь: три вектора вполне могут образовывать новый базис. И первый этап полностью совпадает с решением Примера 6, необходимо проверить, действительно ли векторы линейно независимы:

Вычислим определитель, составленный из координат векторов :

, значит, векторы линейно независимы и образуют базис трехмерного пространства.

! Важно: координаты векторов обязательно записываем в столбцыопределителя, а не в строки. Иначе будет путаница в дальнейшем алгоритме решения.

Теперь вспомним теоретическую часть: если векторы образуют базис, то любой вектор можно единственным способом разложить по данному базису: , где – координаты вектора в базисе .

Поскольку наши векторы образуют базис трёхмерного пространства (это уже доказано), то вектор можно единственным образом разложить по данному базису:
, где – координаты вектора в базисе .

По условию и требуется найти координаты .

Для удобства объяснения поменяю части местами: . В целях нахождения следует расписать данное равенство покоординатно:

По какому принципу расставлены коэффициенты? Все коэффициенты левой части в точности перенесены из определителя , в правую часть записаны координаты вектора .

Получилась система трёх линейных уравнений с тремя неизвестными. Обычно её решают поформулам Крамера, часто даже в условии задачи есть такое требование.

Главный определитель системы уже найден:
, значит, система имеет единственное решение.

Дальнейшее – дело техники:

Таким образом:
– разложение вектора по базису .

Ответ:

Как я уже отмечал, задача носит алгебраический характер. Векторы, которые были рассмотрены – это не обязательно те векторы, которые можно нарисовать в пространстве, а, в первую очередь, абстрактные векторы курса линейной алгебры. Для случая двумерных векторов можно сформулировать и решить аналогичную задачу, решение будет намного проще. Однако на практике мне такое задание ни разу не встречалось, именно поэтому я его пропустил в предыдущем разделе.

Такая же задача с трёхмерными векторами для самостоятельного решения:

Даны векторы . Показать, что векторы образуют базис и найти координаты вектора в этом базисе. Систему линейных уравнений решить методом Крамера.

Полное решение и примерный образец чистового оформления в конце урока.

Аналогично можно рассмотреть четырёхмерное, пятимерное и т.д. векторные пространства, где у векторов соответственно 4, 5 и более координат. Для данных векторных пространств тоже существует понятие линейной зависимости, линейной независимости векторов, существует базис, в том числе, ортонормированный, разложение вектора по базису. Да, такие пространства невозможно нарисовать геометрически, но в них работают все правила, свойства и теоремы двух и трех мерных случаев – чистая алгебра. Собственно, о философских вопросах меня уже пробивало поговорить в статье Частные производные функции трёх переменных, которая появилась раньше данного урока.

Любите векторы, и векторы полюбят вас!

Пример 2: Решение: составим пропорцию из соответствующих координат векторов:

Ответ: при

Пример 4: Доказательство: Трапецией называется четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
1) Проверим параллельность противоположных сторон и .
Найдём векторы:

Вычислим определитель, составленный из координат векторов :
, значит, данные векторы не коллинеарны, и стороны не параллельны.
2) Проверим параллельность противоположных сторон и .
Найдём векторы:

Вычислим определитель, составленный из координат векторов :
, значит, данные векторы коллинеарны, и .
Вывод: Две стороны четырёхугольника параллельны, а две другие стороны не параллельны, значит, он является трапецией по определению. Что и требовалось доказать.

Пример 5: Решение:
б) Проверим, существует ли коэффициент пропорциональности для соответствующих координат векторов:

Система не имеет решения, значит, векторы не коллинеарны.
Более простое оформление:
– вторая и третья координаты не пропорциональны, значит, векторы не коллинеарны.
Ответ: векторы не коллинеарны.
в) Исследуем на коллинеарность векторы . Составим систему:

Соответствующие координаты векторов пропорциональны, значит
Вот здесь как раз не проходит «пижонский» метод оформления.
Ответ:

Пример 6: Решение: б) Вычислим определитель, составленный из координат векторов (определитель раскрыт по первой строке):

, значит, векторы линейно зависимы и не образуют базиса трёхмерного пространства.
Ответ: данные векторы не образуют базиса

Пример 9:Решение:Вычислим определитель, составленный из координат векторов :

Таким образом, векторы линейно независимы и образуют базис.
Представим вектор в виде линейной комбинации базисных векторов:

Покоординатно:

Систему решим по формулам Крамера:
, значит, система имеет единственное решение.

Ответ: Векторы образуют базис,

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?

Векторное произведение векторов.
Смешанное произведение векторов

На данном уроке мы рассмотрим ещё две операции с векторами: векторное произведение векторов и смешанное произведение векторов. Ничего страшного, так иногда бывает, что для полного счастья, помимо скалярного произведения векторов, требуется ещё и ещё. Такая вот векторная наркомания. Может сложиться впечатление, что мы залезаем в дебри аналитической геометрии. Это не так. В данном разделе высшей математики вообще мало дров, разве что на Буратино хватит. На самом деле материал очень распространенный и простой – вряд ли сложнее, чем то же скалярное произведение, даже типовых задач поменьше будет. Главное в аналитической геометрии, как многие убедятся или уже убедились, НЕ ОШИБАТЬСЯ В ВЫЧИСЛЕНИЯХ. Повторяйте как заклинание, и будет вам счастье =)

Если векторы сверкают где-то далеко, как молнии на горизонте, не беда, начните с урокаВекторы для чайников, чтобы восстановить или вновь приобрести базовые знания о векторах. Более подготовленные читатели могут знакомиться с информацией выборочно, я постарался собрать максимально полную коллекцию примеров, которые часто встречаются в практических работах

Чем вас сразу порадовать? Когда я был маленьким, то умел жонглировать двумя и даже тремя шариками. Ловко получалось. Сейчас жонглировать не придётся вообще, поскольку мы будем рассматривать только пространственные векторы, а плоские векторы с двумя координатами останутся за бортом. Почему? Такими уж родились данные действия – векторное и смешанное произведение векторов определены и работают в трёхмерном пространстве. Уже проще!

Источник

Оцените статью
Юридический портал
Adblock
detector